Advertising:
Φυσική: Διαφορά μεταξύ των αναθεωρήσεων
(→Γενικά) |
|||
(17 ενδιάμεσες εκδόσεις από 3 χρήστες δεν εμφανίζονται) | |||
Γραμμή 1: | Γραμμή 1: | ||
Η ''Φυσική'' είναι η [[επιστήμη]] της φύσης με την ευρύτερη [[έννοια]]. | Η ''Φυσική'' είναι η [[επιστήμη]] της φύσης με την ευρύτερη [[έννοια]]. | ||
[[image:Physics-Cartoon-goog.gif|250px|thumb|Φυσική]] | |||
==Ετυμολογία== | |||
Η λέξη Φυσική (Physics) προέρχεται από την ελληνική λέξη [[Φύση]]. | |||
==Γενικά== | ==Γενικά== | ||
[[image:QuantumPhysics-goog.jpg|400px|thumb|center|Φυσική και Γένεση του Σύμπαντος]] | [[image:QuantumPhysics-goog.jpg|400px|thumb|center|Φυσική και Γένεση του Σύμπαντος]] | ||
Η Φυσική μελετά την συμπεριφορά και τις [[ιδιότητα|ιδιότητες]] της [[ύλη|ύλης]], | Η Φυσική μελετά την συμπεριφορά και τις [[ιδιότητα|ιδιότητες]] της [[ύλη|ύλης]], | ||
από πολύ μικρό δηλ. τα υποατομικά [[ | από πολύ μικρό δηλ. τα υποατομικά [[σωμάτιο|σωματίδια]], που αποτελούν όλη την συνήθη ύλη ([[Σωματιδιακή Φυσική]]), έως το πολύ μεγάλο δηλ. την συμπεριφορά του [[Σύμπαν|Σύμπαντος]] ως ολότητα ([[Κοσμολογία]]). | ||
Σκοπός της | Σκοπός της Φυσικής είναι η εύρεση του πλαισίου των θεμελιωδών νόμων στους οποίους υπακούουν οι φυσικές οντότητες. | ||
Παρακάτω δίνεται μια επισκόπηση των κύριων κλάδων και εννοιών της φυσικής, ακολουθούμενη από μία σύντομη επισκόπηση της ιστορίας της φυσικής και κάθε κλάδου της. | Παρακάτω δίνεται μια επισκόπηση των κύριων κλάδων και εννοιών της φυσικής, ακολουθούμενη από μία σύντομη επισκόπηση της ιστορίας της φυσικής και κάθε κλάδου της. | ||
==Επισκόπηση της Φυσικής== | ==Επισκόπηση της Φυσικής== | ||
=== Βασικές Θεωρίες === | === Βασικές Θεωρίες === | ||
[[Κλασσική | *[[Κλασσική Σχετικότητα]] | ||
[[Χορδιακή Θεωρία]] | *[[Στατιστική]] | ||
*[[Ηλεκτρομαγνητισμός|Ηλεκτρομαγνητική Θεωρία]] | |||
*[[Ειδική Σχετικότητα]] | |||
*[[Γενική Σχετικότητα]] | |||
*[[Κβαντομηχανική|Κβαντική Θεωρία]] | |||
*[[Κβαντική Πεδιακή Θεωρία]] | |||
*[[Ενοποιητικές Θεωρίες]] | |||
*[[Χορδιακή Θεωρία]] | |||
=== Θεμελιώδεις Επιδράσεις === | === Θεμελιώδεις Επιδράσεις === | ||
*[[Βαρυτική Αλληλεπίδραση]] | |||
*[[Ηλεκτρομαγνητική Αλληλεπίδραση]] | |||
*[[Ασθενής Αλληλεπίδραση]] | |||
*[[Ισχυρή Αλληλεπίδραση]] | |||
[[ | === [[Σωματίδιο|Σωματίδια]] === | ||
*[[Νετρόνιο]] | |||
*[[Πρωτόνιο]] | |||
*[[Quark|Κυρκόνιο]] (quark) | |||
---- | |||
*[[Ηλεκτρόνιο]] | |||
*[[Νετρίνο]] | |||
---- | |||
*[[Φωτόνιο]] | |||
*[[Γλοιόνιο]] (gluon) | |||
*[[Βαρυτόνιο]] (ή γραβιτόνιο ή γκραβιτόνιο) (graviton) | |||
---- | |||
*[[Μποζόνιο|Βοσόνιο]] (ή μποζόνιο) (boson) | |||
*[[Φερμιόνιο]] | |||
== Κλάδοι της Φυσικής == | |||
*[[Κλασσική Μηχανική]] | |||
*[[Μηχανική Συνεχούς Μέσου]] | |||
*[[Ρευστοδυναμική]] | |||
*[[Ηλεκτροφυσική]] | |||
*[[Οπτική]] | |||
*[[Ακουστική]] | |||
---- | |||
*[[Αστροφυσική]] | |||
*[[Κοσμολογία]], | |||
---- | |||
*[[Ατομική Φυσική]], [[Μοριακή Φυσική]], | |||
*[[Πυρηνική Φυσική]], | |||
*[[Σωματιδιακή Φυσική]] (ή Φυσική Υψηλών Ενεργειών) | |||
*[[Κβαντική Φυσική]] | |||
---- | |||
*[[Θερμοδυναμική]] | |||
*[[Στατιστική Μηχανική]] | |||
*[[Φυσική Στερεάς Κατάστασης]] | |||
---- | |||
*[[Κρυογενετική]], [[Φυσική Πλάσματος]], | |||
*[[Φυσική Πολυμερών]] | |||
*[[Υπολογιστική Φυσική]] | |||
== Σύντομη Ιστορία της Φυσικής == | == Σύντομη Ιστορία της Φυσικής == | ||
Γραμμή 45: | Γραμμή 90: | ||
Άλλα σημαντικά επιτεύγματα κατά την περίοδο αυτή σημειώθηκαν από τους: [[Γαλιλαίος |Γαλιλαίο]], [[Huygens]], [[Kepler]], [[Pascal]] κ.α. | Άλλα σημαντικά επιτεύγματα κατά την περίοδο αυτή σημειώθηκαν από τους: [[Γαλιλαίος |Γαλιλαίο]], [[Huygens]], [[Kepler]], [[Pascal]] κ.α. | ||
Στις αρχές του 17ου αιώνα, ο [[Γαλιλαίος ]] πρωτοστάτησε στην καθιέρωση πειραματικών μεθόδων με σκοπό την επαλήθευση φυσικών θεωριών, μια ιδέα που αποτελεί το κλειδί της επιστημονικής μεθόδου. Ο Γαλιλαίος διατύπωσε και τεκμηρίωσε με επιτυχία αρκετές υποθέσεις στο πεδίο της [[δυναμική|Δυναμικής]], ιδίως δε το νόμο της [[Αδράνεια|Αδράνειας]]. Στα 1687, ο [[Νεύτων]] δημοσίευσε τα Philosophiae Naturalis Principia Mathematica (Μαθηματικές Αρχές της Φυσικής Φιλοσοφίας), θεμελιώνοντας με λεπτομέρειες δύο περιεκτικές και επιτυχημένες φυσικές θεωρίες: τους [[Νόμοι | Στις αρχές του 17ου αιώνα, ο [[Γαλιλαίος ]] πρωτοστάτησε στην καθιέρωση πειραματικών μεθόδων με σκοπό την επαλήθευση φυσικών θεωριών, μια ιδέα που αποτελεί το κλειδί της επιστημονικής μεθόδου. Ο Γαλιλαίος διατύπωσε και τεκμηρίωσε με επιτυχία αρκετές υποθέσεις στο πεδίο της [[δυναμική|Δυναμικής]], ιδίως δε το νόμο της [[Αδράνεια|Αδράνειας]]. Στα 1687, ο [[Νεύτων]] δημοσίευσε τα Philosophiae Naturalis Principia Mathematica (Μαθηματικές Αρχές της Φυσικής Φιλοσοφίας), θεμελιώνοντας με λεπτομέρειες δύο περιεκτικές και επιτυχημένες φυσικές θεωρίες: τους [[Νόμοι του Νεύτωνα|νόμους της κίνησης του Νεύτωνα]], από τους οποίους αναπτύχθηκε η [[Κλασσική Μηχανική]] και τον [[βαρύτητα|Νόμο της Παγκόσμιας Έλξης του Νεύτωνα]], ο οποίος περιγράφει τη [[Θεμελιώδης Αλληλεπίδραση|θεμελιώδη δύναμη]] της [[βαρύτητα|βαρύτητας]]. Και οι δύο θεωρίες ήταν σε καλή συμφωνία με το πείραμα. Οι ''Μαθηματικές Αρχές'' περιλάμβαναν ωστόσο και αρκετές θεωρίες σχετικά με τη [[Ρευστοδυναμική]]. Η Κλασσική Μηχανική επεκτάθηκε αργότερα σε μεγάλο βαθμό από τους [[Lagrange]], [[Hamilton]] κ.α., που παρήγαγαν νέο φορμαλισμό, αρχές και πορίσματα. Ο Νόμος της Παγκόσμιας Έλξης εγκαινίασε τον κλάδο της [[Αστροφυσική|Αστροφυσικής]], ο οποίος περιγράφει τα [[Αστρονομία|Αστρονομικά]] φαινόμενα με βάση φυσικές θεωρίες. | ||
Μετά τη θεμελίωση της [[Κλασσική Μηχανική|Κλασσικής Μηχανικής]] από τον Νεύτωνα, το επόμενο μεγάλο πεδίο έρευνας στη Φυσική αφορούσε τη φύση του [[ηλεκτρισμός|ηλεκτρισμού]]. Παρατηρήσεις κατά τον 17ο και 18ο αιώνα από επιστήμονες όπως ο [[Boyle|Robert Boyle]], ο Stephen Gray και ο [[Φραγκλίνος]] έβαλαν τα θεμέλια της κατοπινής έρευνας. Επίσης, οι παρατηρήσεις αυτές οδήγησαν στη βασική κατανόηση του ηλεκτρικού φορτίου και του [[Ηλεκτρικό Ρεύμα|ηλεκτρικού ρεύματος]]. | Μετά τη θεμελίωση της [[Κλασσική Μηχανική|Κλασσικής Μηχανικής]] από τον Νεύτωνα, το επόμενο μεγάλο πεδίο έρευνας στη Φυσική αφορούσε τη φύση του [[ηλεκτρισμός|ηλεκτρισμού]]. Παρατηρήσεις κατά τον 17ο και 18ο αιώνα από επιστήμονες όπως ο [[Boyle|Robert Boyle]], ο Stephen Gray και ο [[Φραγκλίνος]] έβαλαν τα θεμέλια της κατοπινής έρευνας. Επίσης, οι παρατηρήσεις αυτές οδήγησαν στη βασική κατανόηση του ηλεκτρικού φορτίου και του [[Ηλεκτρικό Ρεύμα|ηλεκτρικού ρεύματος]]. | ||
Γραμμή 51: | Γραμμή 96: | ||
Στα 1821, ο [[Faraday|Michael Faraday]] ενοποίησε τη μελέτη του [[μαγνητισμός|Μαγνητισμού]] με τη μελέτη του ηλεκτρισμού, δείχνοντας πειραματικά ότι ένας κινούμενος [[μαγνήτης]] επάγει [[Ηλεκτρικό Ρεύμα]] σε έναν [[αγωγός|αγωγό]]. Ο Faraday επίσης συνέλαβε τη φυσική έννοια που μετέπειτα ονομάστηκε [[Ηλεκτρομαγνητικό Πεδίο]]. Ο [[Maxwell|James Clerk Maxwell]] ανέπτυξε αυτή την ιδέα, στα 1864, καταλήγοντας σε ένα σύστημα 20 συζευγμένων εξισώσεων που εξηγούσαν τις αλληλεπιδράσεις μεταξύ [[Ηλεκτρικό Πεδίο|ηλεκτρικών]] και [[Μαγνητικό Πεδίο|μαγνητικών]] πεδίων. Οι 20 αυτές εξισώσεις ανήχθησαν αργότερα, με τη χρήση [[Διανυσματικός Λογισμός|διανυσματικού λογισμού]], σε ένα σύστημα [[Εξισώσεις Maxwell|τεσσάρων εξισώσεων]]. | Στα 1821, ο [[Faraday|Michael Faraday]] ενοποίησε τη μελέτη του [[μαγνητισμός|Μαγνητισμού]] με τη μελέτη του ηλεκτρισμού, δείχνοντας πειραματικά ότι ένας κινούμενος [[μαγνήτης]] επάγει [[Ηλεκτρικό Ρεύμα]] σε έναν [[αγωγός|αγωγό]]. Ο Faraday επίσης συνέλαβε τη φυσική έννοια που μετέπειτα ονομάστηκε [[Ηλεκτρομαγνητικό Πεδίο]]. Ο [[Maxwell|James Clerk Maxwell]] ανέπτυξε αυτή την ιδέα, στα 1864, καταλήγοντας σε ένα σύστημα 20 συζευγμένων εξισώσεων που εξηγούσαν τις αλληλεπιδράσεις μεταξύ [[Ηλεκτρικό Πεδίο|ηλεκτρικών]] και [[Μαγνητικό Πεδίο|μαγνητικών]] πεδίων. Οι 20 αυτές εξισώσεις ανήχθησαν αργότερα, με τη χρήση [[Διανυσματικός Λογισμός|διανυσματικού λογισμού]], σε ένα σύστημα [[Εξισώσεις Maxwell|τεσσάρων εξισώσεων]]. | ||
Πέρα από τα συνήθη ηλεκτρομαγνητικά φαινόμενα, οι εξισώσεις του Maxwell μπορούν επίσης να χρησιμοποιηθούν για να περιγράψουν το [[φως]]. Η παρατήρηση αυτή επιβεβαιώθηκε με την ανακάλυψη των [[ραδιοκύματα|ραδιοκυμάτων]] στα 1888 από τον [[Hertz|Heinrich Hertz]], καθώς και στα 1895, όταν ο [[Roentgen|Wilhelm Roentgen | Πέρα από τα συνήθη ηλεκτρομαγνητικά φαινόμενα, οι εξισώσεις του Maxwell μπορούν επίσης να χρησιμοποιηθούν για να περιγράψουν το [[φως]]. Η παρατήρηση αυτή επιβεβαιώθηκε με την ανακάλυψη των [[ραδιοκύματα|ραδιοκυμάτων]] στα 1888 από τον [[Hertz, Heinrich Rudolf|Heinrich Hertz]], καθώς και στα 1895, όταν ο [[Roentgen, Wilhelm|Wilhelm Roentgen]] εντόπισε τις [[Aκτίνες Χ]]. Η περιγραφή του φωτός με όρους ηλεκτρομαγνητικού πεδίου αποτέλεσε το έναυσμα για τη δημοσίευση, από τον [[Einstein]] της [[Ειδική Σχετικότητα|Ειδικής Θεωρίας της Σχετικότητας]]. Η θεωρία αυτή ενοποίησε την Κλασσική Μηχανική με τον [[Ηλεκτροφυσική|Ηλεκτρομαγνητισμό]]. | ||
Η [[Ειδική Σχετικότητα|Ειδική Θεωρία της Σχετικότητας]] ενοποιεί το χώρο και το χρόνο σε μία και μόνη οντότητα, τον [[Χωρόχρονος|Χωρόχρονο]]. Η Σχετικότητα ορίζει έναν νεό κανόνα μετασχηματισμού μεταξύ [[Αδρανειακό Σύστημα Αναφοράς|αδρανειακών συστημάτων αναφοράς]] απ' ό,τι η κλασική μηχανική, αυτό προϋπέθετε την ανάπτυξη σχετικιστικής μηχανικής ως αντικατάστατο της κλασσικής μηχανικής. Στην περιοχή των χαμηλών (σχετικά) ταχυτήτων, οι δύο θεωρίες συμφωνούν. Ο Αινστάιν επεξέτεινε περαιτέρω την Ειδική Σχετικότητα συμπεριλαμβάνοντας τη Βαρύτητα στους υπολογισμούς του. Δημοσίευσε την [[Γενική Σχετικότητα]] στα 1915. | Η [[Ειδική Σχετικότητα|Ειδική Θεωρία της Σχετικότητας]] ενοποιεί το χώρο και το χρόνο σε μία και μόνη οντότητα, τον [[Χωρόχρονος|Χωρόχρονο]]. Η Σχετικότητα ορίζει έναν νεό κανόνα μετασχηματισμού μεταξύ [[Αδρανειακό Σύστημα Αναφοράς|αδρανειακών συστημάτων αναφοράς]] απ' ό,τι η κλασική μηχανική, αυτό προϋπέθετε την ανάπτυξη σχετικιστικής μηχανικής ως αντικατάστατο της κλασσικής μηχανικής. Στην περιοχή των χαμηλών (σχετικά) ταχυτήτων, οι δύο θεωρίες συμφωνούν. Ο Αινστάιν επεξέτεινε περαιτέρω την Ειδική Σχετικότητα συμπεριλαμβάνοντας τη Βαρύτητα στους υπολογισμούς του. Δημοσίευσε την [[Γενική Σχετικότητα]] στα 1915. | ||
Γραμμή 64: | Γραμμή 109: | ||
Ο [[Becquerel|Henri Becquerel) ανακάλυψε συμπτωματικά τη [[ραδιενέργεια]] στα 1896. Τον επόμενο χρόνο, ο [[Thomson]] ανακάλυψε το [[ηλεκτρόνιο]]. Οι ανακαλύψεις αυτές διέψευσαν την υπόθεση πολλών φυσικών, ότι τα άτομα ήταν οι έσχατες θεμελιώδεις δομικές μονάδες της ύλης και παρακίνησαν σε περαιτέρω μελέτη της δομής των [[άτομο|ατόμων]]. | Ο [[Becquerel|Henri Becquerel) ανακάλυψε συμπτωματικά τη [[ραδιενέργεια]] στα 1896. Τον επόμενο χρόνο, ο [[Thomson]] ανακάλυψε το [[ηλεκτρόνιο]]. Οι ανακαλύψεις αυτές διέψευσαν την υπόθεση πολλών φυσικών, ότι τα άτομα ήταν οι έσχατες θεμελιώδεις δομικές μονάδες της ύλης και παρακίνησαν σε περαιτέρω μελέτη της δομής των [[άτομο|ατόμων]]. | ||
Το 1900, ο [[Planck|Max Planck]] δημοσίευσε μια εξήγηση για το φαινόμενο της "ακτινοβολίας μέλανος σώματος". Η εξίσωσή του προϋπέθετε ότι η ακτινοβολία είναι [[κβάντωση|κβαντισμένη]] στη φύση, δηλαδή εκπέμπεται κατά διακριτά πακέτα. Η υπόθεση αυτή αποτέλεσε το εναρκτήριο επιχείρημα στο οικοδόμημα που έμελλε να γίνει η [[Κβαντική Μηχανική]]. | Το 1900, ο [[Planck, Max|Max Planck]] δημοσίευσε μια εξήγηση για το φαινόμενο της "ακτινοβολίας μέλανος σώματος". Η εξίσωσή του προϋπέθετε ότι η ακτινοβολία είναι [[κβάντωση|κβαντισμένη]] στη φύση, δηλαδή εκπέμπεται κατά διακριτά πακέτα. Η υπόθεση αυτή αποτέλεσε το εναρκτήριο επιχείρημα στο οικοδόμημα που έμελλε να γίνει η [[Κβαντική Μηχανική]]. | ||
Κατά τη δεκαετία του 1920, ο [[Schrodinger|Erwin Schrödinger]], ο [[Heisenberg|Werner Heisenberg]] και ο [[Born|Max Born]] πέτυχαν να διατυπώσουν μια συνεπή εικόνα της χημικής συμπεριφοράς της ύλης και μια πλήρη θεωρία της ηλεκτρονικής δομής του ατόμου, ως λογικό επακόλουθο της κβαντικής θεωρίας. | Κατά τη δεκαετία του 1920, ο [[Schrodinger|Erwin Schrödinger]], ο [[Heisenberg|Werner Heisenberg]] και ο [[Born|Max Born]] πέτυχαν να διατυπώσουν μια συνεπή εικόνα της χημικής συμπεριφοράς της ύλης και μια πλήρη θεωρία της ηλεκτρονικής δομής του ατόμου, ως λογικό επακόλουθο της κβαντικής θεωρίας. | ||
Γραμμή 74: | Γραμμή 119: | ||
Η ισοδυναμία μάζας και ενέργειας (Αινστάιν, 1905) επαληθεύτηκε με δραματικό τρόπο κατά τη διάρκεια του [[Δεύτερος Παγκόσμιος Πόλεμος|Δευτέρου Παγκοσμίου Πολέμου]], καθώς και τα δύο στρατόπεδα διεξήγαγαν έρευνες στην [[Πυρηνική Φυσική]], με σκοπό την κατασκευή [[Ατομική Βόμβα|πυρηνικής βόμβας]]. Το Γερμανικό εγχείρημα, του οποίου ηγείτο ο Χάιζεμπεργκ, κατέληξε σε αποτυχία, ενώ το Συμμαχικό Σχέδιο Μανχάτταν πέτυχε το στόχο του. Στην Αμερική, μια ομάδα με επικεφαλής τον [[Fermi(Enrico Fermi]] παρήγαγε την πρώτη ανθρωπογενή αλυσσιδωτή πυρηνική αντίδραση στα 1942, ενώ στα 1945 πυροδοτήθηκε η πρώτη στον κόσμο πυρηνική εκρηκτική ύλη στην περιοχή Τρίνιτυ, κοντά στο Αλαμογκόρντο του [[Νέο Μεξικό|Νέου Μεξικού]]. | Η ισοδυναμία μάζας και ενέργειας (Αινστάιν, 1905) επαληθεύτηκε με δραματικό τρόπο κατά τη διάρκεια του [[Δεύτερος Παγκόσμιος Πόλεμος|Δευτέρου Παγκοσμίου Πολέμου]], καθώς και τα δύο στρατόπεδα διεξήγαγαν έρευνες στην [[Πυρηνική Φυσική]], με σκοπό την κατασκευή [[Ατομική Βόμβα|πυρηνικής βόμβας]]. Το Γερμανικό εγχείρημα, του οποίου ηγείτο ο Χάιζεμπεργκ, κατέληξε σε αποτυχία, ενώ το Συμμαχικό Σχέδιο Μανχάτταν πέτυχε το στόχο του. Στην Αμερική, μια ομάδα με επικεφαλής τον [[Fermi(Enrico Fermi]] παρήγαγε την πρώτη ανθρωπογενή αλυσσιδωτή πυρηνική αντίδραση στα 1942, ενώ στα 1945 πυροδοτήθηκε η πρώτη στον κόσμο πυρηνική εκρηκτική ύλη στην περιοχή Τρίνιτυ, κοντά στο Αλαμογκόρντο του [[Νέο Μεξικό|Νέου Μεξικού]]. | ||
Από το 1900 και μετά, οι | Από το 1900 και μετά, οι Planck, Αινστάιν, [[Bohr]] και άλλοι άρχισαν να αναπτύσσουν [[κβάντωση|κβαντικές]] θεωρίες για να εξηγήσουν διάφορα "ανώμαλα" πειραματικά αποτελέσματα, εισάγοντας διακριτά ενεργειακά επίπεδα. Τόσο ο Βέρνερ Χάιζεμπεργκ στα 1925, όσο και οι Έρβιν Σρέντινγκερ και Ντιράκ στα 1926, διατύπωσαν φορμαλιστικά την [[Κβαντομηχανική]], η οποία αποσαφήνιζε τις κβαντικές θεωρίες που είχαν προηγηθεί. Στην κβαντομηχανική, τα αποτελέσματα των φυσικών μετρήσεων είναι εγγενώς [[πιθανότητα|πιθανοκρατικά]] και η θεωρία παρέχει μεθόδους για τον υπολογισμό των πιθανοτήτων αυτών. Περιγράφει με επιτυχία τη συμπεριφορά της ύλης στις μικροσκοπικές κλίμακες. | ||
Η κβαντομηχανική μας έδωσε επίσης τα θεωρητικά εργαλεία για τη μελέτη της Φυσικής της Συμπυκνωμένης Ύλης, η οποία μελετά τη φυσική συμπεριφορά των στερεών και υγρών σωμάτων, συμπεριλαμβανομένων και φαινομένων όπως η κρυσταλλική δομή, η [[ημιαγωγός|ημιαγωγιμότητα]] και η [[υπεραγωγός|υπεραγωγιμότητα]]. Ανάμεσα στους πρωτοπόρους της συμπυκνωμένης ύλης συγκαταλέγεται ο [[Bloch|Felix Bloch), ο οποίος διατύπωσε μια κβαντομηχανική περιγραφή της συμπεριφοράς των ηλεκτρονίων στις κρυσταλλικές δομές το 1928. | Η κβαντομηχανική μας έδωσε επίσης τα θεωρητικά εργαλεία για τη μελέτη της Φυσικής της Συμπυκνωμένης Ύλης, η οποία μελετά τη φυσική συμπεριφορά των στερεών και υγρών σωμάτων, συμπεριλαμβανομένων και φαινομένων όπως η κρυσταλλική δομή, η [[ημιαγωγός|ημιαγωγιμότητα]] και η [[υπεραγωγός|υπεραγωγιμότητα]]. Ανάμεσα στους πρωτοπόρους της συμπυκνωμένης ύλης συγκαταλέγεται ο [[Bloch|Felix Bloch), ο οποίος διατύπωσε μια κβαντομηχανική περιγραφή της συμπεριφοράς των ηλεκτρονίων στις κρυσταλλικές δομές το 1928. | ||
Γραμμή 87: | Γραμμή 132: | ||
==Σταθμοί στην Ιστορία της Φυσικής== | ==Σταθμοί στην Ιστορία της Φυσικής== | ||
~580 πΧ Ανακαλύπτονται ο [[ | ~580 πΧ Ανακαλύπτονται ο [[Ηλεκτρισμός]] και ο [[Μαγνητισμός]] από το [[Θαλής|Θαλή]]. | ||
440 π.Χ. Διατυπώνεται η έννοια του ατόμου από το [[Δημόκριτος|Δημόκριτο]]. | 440 π.Χ. Διατυπώνεται η έννοια του ατόμου από το [[Δημόκριτος|Δημόκριτο]]. | ||
Γραμμή 93: | Γραμμή 138: | ||
350 π.Χ. Ο [[Αριστοτέλης]] καταγράφει μία επιτομή των απόψεων της εποχής του αλλά και δικές του πρωτότυπες απόψεις σχετικά με τη [[Φύση]]. | 350 π.Χ. Ο [[Αριστοτέλης]] καταγράφει μία επιτομή των απόψεων της εποχής του αλλά και δικές του πρωτότυπες απόψεις σχετικά με τη [[Φύση]]. | ||
260 π.Χ. Ο [[Αρχιμήδης]] διατυπώνει τον νόμο της [[ | 260 π.Χ. Ο [[Αρχιμήδης]] διατυπώνει τον νόμο της [[Άνωση|άνωσης]] και το θεώρημα των [[Μοχλού|μοχλών]] της [[Στατική|Στατικής]]. | ||
140 μ.Χ. Περιγράφεται το [[ | 140 μ.Χ. Περιγράφεται το [[Γεωκεντρισμός|γεωκεντρικό]] Σύμπαν από τον Κλαύδιο Πτολεμαίο. | ||
1025 Τίθενται οι πρώτες αρχές της [[Οπτική|Οπτικής]] από τον άραβα Αλχάζεν. | 1025 Τίθενται οι πρώτες αρχές της [[Οπτική|Οπτικής]] από τον άραβα Αλχάζεν. | ||
1180 Ανακαλύπτεται η | 1180 Ανακαλύπτεται η πυξίδα από τον άγγλο Α. Neckam και εφαρμόζεται στη ναυσιπλοία. Αρχή της παγκόσμιας κυριαρχίας των Ευρωπαίων. | ||
1454 Ανακάλυψη της [[Τυπογραφία|Τυπογραφίας]] από τον [[Γουτεμβέργιος|Γουτεμβέργιο]]. Ένας από τους μεγαλύτερους σταθμούς στην καταγραφή και κυρίως στη διάδοση των ιδεών. | 1454 Ανακάλυψη της [[Τυπογραφία|Τυπογραφίας]] από τον [[Γουτεμβέργιος|Γουτεμβέργιο]]. Ένας από τους μεγαλύτερους σταθμούς στην καταγραφή και κυρίως στη διάδοση των ιδεών. | ||
1543 O N. [[Κοπέρνικος]] εισηγείται την [[ | 1543 O N. [[Κοπέρνικος]] εισηγείται την [[Ηλιοκεντρισμός|Ηλιοκεντρική Θεωρία]]. Αφετηρία της επιστημονικής επανάστασης στην [[Αστρονομία]]. | ||
1583 Τίθενται τα θεμέλια της [[Υδροστατική|Υδροστατικής]] από τον ολλανδό μαθηματικό S. Stevin. | 1583 Τίθενται τα θεμέλια της [[Υδροστατική|Υδροστατικής]] από τον ολλανδό μαθηματικό S. Stevin. | ||
Γραμμή 109: | Γραμμή 154: | ||
1589 Ο [[Γαλιλαίος]] μελετά την ελεύθερη πτώση και διατυπώνει τους αντίστοιχους νόμους. Είναι ο πρώτος που ακολούθησε τη διαδικασία του πειράματος και της γενίκευσης των πειραματικών δεδομένων, για τη διατύπωση θεωρίας ορίζοντας έτσι τις παραμέτρους της πειραματικής επιστήμης. Γι' αυτό θεωρείται ο ιδρυτής της σύγχρονης Φυσικής. | 1589 Ο [[Γαλιλαίος]] μελετά την ελεύθερη πτώση και διατυπώνει τους αντίστοιχους νόμους. Είναι ο πρώτος που ακολούθησε τη διαδικασία του πειράματος και της γενίκευσης των πειραματικών δεδομένων, για τη διατύπωση θεωρίας ορίζοντας έτσι τις παραμέτρους της πειραματικής επιστήμης. Γι' αυτό θεωρείται ο ιδρυτής της σύγχρονης Φυσικής. | ||
1590 Εφευρίσκεται το | 1590 Εφευρίσκεται το μικροσκόπιο από τον Ολλανδό Zacharias Janssen | ||
1592 Κατασκευάζεται το πρώτο | 1592 Κατασκευάζεται το πρώτο θερμόμετρο από τον Γαλιλαίο. Ακριβή θερμόμετρα θα κατασκευαστούν 120 περίπου χρόνια αργότερα. | ||
1608 Εφευρίσκεται τυχαία το [[τηλεσκόπιο]] από τον Ολλανδό Hans Lippershey. Ένα χρόνο αργότερα κατασκεύασε τηλεσκόπιο και ο Γαλιλαίος. | 1608 Εφευρίσκεται τυχαία το [[τηλεσκόπιο]] από τον Ολλανδό Hans Lippershey. Ένα χρόνο αργότερα κατασκεύασε τηλεσκόπιο και ο Γαλιλαίος. | ||
Γραμμή 119: | Γραμμή 164: | ||
1620 Περιγράφεται από τον άγγλο φιλόσοφο [[Bacon|F. Bacon]] η «επιστημονική μέθοδος». | 1620 Περιγράφεται από τον άγγλο φιλόσοφο [[Bacon|F. Bacon]] η «επιστημονική μέθοδος». | ||
1643 Ανακάλυψη του | 1643 Ανακάλυψη του βαρομέτρου από τον [[Trricelli]]. Μελέτη της ατμοσφαιρικής πίεσης. | ||
1666 Πειράματα του [[Newton]] σχετικά με το [[φώς]] αποδείχνουν ότι το λευκό φως είναι το αποτέλεσμα της σύνθεσης των χρωμάτων της ίριδας. | 1666 Πειράματα του [[Newton]] σχετικά με το [[φώς]] αποδείχνουν ότι το λευκό φως είναι το αποτέλεσμα της σύνθεσης των χρωμάτων της ίριδας. | ||
Γραμμή 194: | Γραμμή 239: | ||
1887 Το πείραμα Michelson - Morley. Η πιο δημιουργική αποτυχία (!) στην ιστορία της Φυσικής. Το πείραμα Μ-Μ απέτυχε να δείξει την ύπαρξη του αιθέρα, που ήταν ισχυρή υπόθεση εκείνα τα χρόνια. Βαθύτερη κατανόηση της Ηλεκτρομαγνητικής (ΗΜ) θεωρίας έδειξε ότι το ΗΜ κύμα είναι μία αυτοϋποστηριζόμενη διαδικασία και έτσι η υπόθεση του αιθέρα (η οποία προϋπήρχε της ΗΜ θεωρίας) δεν χρειάζεται. Η ανάλυση της αποτυχίας του πειράματος ΜΜ οδήγησε στην υπόθεση της σταθερής ταχύτητας του φωτός ανεξάρτητα από την ταχύτητα του παρατηρητή, που αναδείχτηκε στο ένα από τα αξιώματα της ειδικής σχετικότητας. | 1887 Το πείραμα Michelson - Morley. Η πιο δημιουργική αποτυχία (!) στην ιστορία της Φυσικής. Το πείραμα Μ-Μ απέτυχε να δείξει την ύπαρξη του αιθέρα, που ήταν ισχυρή υπόθεση εκείνα τα χρόνια. Βαθύτερη κατανόηση της Ηλεκτρομαγνητικής (ΗΜ) θεωρίας έδειξε ότι το ΗΜ κύμα είναι μία αυτοϋποστηριζόμενη διαδικασία και έτσι η υπόθεση του αιθέρα (η οποία προϋπήρχε της ΗΜ θεωρίας) δεν χρειάζεται. Η ανάλυση της αποτυχίας του πειράματος ΜΜ οδήγησε στην υπόθεση της σταθερής ταχύτητας του φωτός ανεξάρτητα από την ταχύτητα του παρατηρητή, που αναδείχτηκε στο ένα από τα αξιώματα της ειδικής σχετικότητας. | ||
1888 Παραγωγή ραδιοκυμάτων από τον Γερμανό φυσικό H.R.Hertz. Οι ασύρματες τηλεπικοινωνίες επί θύραις! | 1888 Παραγωγή ραδιοκυμάτων από τον Γερμανό φυσικό [[Hertz, Heinrich Rudolf|H. R. Hertz]]. Οι ασύρματες τηλεπικοινωνίες επί θύραις! | ||
1895 Ο Γερμανός φυσικός W.C.Roentgen ανακαλύπτει τις ακτίνες Χ. Η Ιατρική απεκόμεσε μέγιστα ωφέλη από την ανακάλυψη αυτή ενώ ο ίδιος κέρδισε το βραβείο Nobel λίγα χρόνια αργότερα. | 1895 Ο Γερμανός φυσικός W.C.Roentgen ανακαλύπτει τις ακτίνες Χ. Η Ιατρική απεκόμεσε μέγιστα ωφέλη από την ανακάλυψη αυτή ενώ ο ίδιος κέρδισε το βραβείο Nobel λίγα χρόνια αργότερα. | ||
Γραμμή 381: | Γραμμή 426: | ||
1990 Τίθεται σε τροχιά το διαστημικό τηλεσκόπιο Hubble. Το τηλεσκόπιο αυτό δίνει πολύ καθαρότερες εικόνες του διαστήματος από τα επίγεια τηλεσκόπια και επιτρέπει στον άνθρωπο να ερευνήσει το διάστημα σε βάθος ως τότε απρόσιτο. | 1990 Τίθεται σε τροχιά το διαστημικό τηλεσκόπιο Hubble. Το τηλεσκόπιο αυτό δίνει πολύ καθαρότερες εικόνες του διαστήματος από τα επίγεια τηλεσκόπια και επιτρέπει στον άνθρωπο να ερευνήσει το διάστημα σε βάθος ως τότε απρόσιτο. | ||
Τέλη του 20ου αιώνα Διατυπώνεται η θεωρία του «Καθιερωμένου Προτύπου» (Standard Μodel), που είναι συνδυασμός της ηλεκτρασθενούς θεωρίας και της κβαντικής χρωμοδυναμικής, το οποίο επιχειρεί να περιγράψει όλες τις συμπεριφορές των στοιχειωδών σωματιδίων, λεπτονίων και κουάρκ. Η επιτυχία του υπερβαίνει και τις πιο αισιόδοξες προβλέψεις. | Τέλη του 20ου αιώνα Διατυπώνεται η θεωρία του «Καθιερωμένου Προτύπου» (Standard Μodel), που είναι συνδυασμός της ηλεκτρασθενούς θεωρίας και της κβαντικής χρωμοδυναμικής, το οποίο επιχειρεί να περιγράψει όλες τις συμπεριφορές των στοιχειωδών σωματιδίων, λεπτονίων και κουάρκ. Η επιτυχία του υπερβαίνει και τις πιο αισιόδοξες προβλέψεις. | ||
==Βιβλιογραφία== | ==Βιβλιογραφία== | ||
Γραμμή 395: | Γραμμή 436: | ||
==Ιστογραφία== | ==Ιστογραφία== | ||
* [http://147.102.192.6/eesfye/POP/articles/history_physics.html Εφημερίδα ΒΗΜΑ] | |||
*[http://www.livepedia.gr/index.php/%CE%A6%CF%85%CF%83%CE%B9%CE%BA%CE%AE Σχετικό άρθρο στην Livepedia] | *[http://www.livepedia.gr/index.php/%CE%A6%CF%85%CF%83%CE%B9%CE%BA%CE%AE Σχετικό άρθρο στην Livepedia] | ||
[[Category: Βασικές Έννοιες Φυσικής]] | [[Category: Βασικές Έννοιες Φυσικής]] |
Τελευταία αναθεώρηση της 16:48, 2 Ιανουαρίου 2007
Η Φυσική είναι η επιστήμη της φύσης με την ευρύτερη έννοια.
Ετυμολογία
Η λέξη Φυσική (Physics) προέρχεται από την ελληνική λέξη Φύση.
Γενικά
Η Φυσική μελετά την συμπεριφορά και τις ιδιότητες της ύλης, από πολύ μικρό δηλ. τα υποατομικά σωματίδια, που αποτελούν όλη την συνήθη ύλη (Σωματιδιακή Φυσική), έως το πολύ μεγάλο δηλ. την συμπεριφορά του Σύμπαντος ως ολότητα (Κοσμολογία).
Σκοπός της Φυσικής είναι η εύρεση του πλαισίου των θεμελιωδών νόμων στους οποίους υπακούουν οι φυσικές οντότητες.
Παρακάτω δίνεται μια επισκόπηση των κύριων κλάδων και εννοιών της φυσικής, ακολουθούμενη από μία σύντομη επισκόπηση της ιστορίας της φυσικής και κάθε κλάδου της.
Επισκόπηση της Φυσικής
Βασικές Θεωρίες
- Κλασσική Σχετικότητα
- Στατιστική
- Ηλεκτρομαγνητική Θεωρία
- Ειδική Σχετικότητα
- Γενική Σχετικότητα
- Κβαντική Θεωρία
- Κβαντική Πεδιακή Θεωρία
- Ενοποιητικές Θεωρίες
- Χορδιακή Θεωρία
Θεμελιώδεις Επιδράσεις
Σωματίδια
Κλάδοι της Φυσικής
- Ατομική Φυσική, Μοριακή Φυσική,
- Πυρηνική Φυσική,
- Σωματιδιακή Φυσική (ή Φυσική Υψηλών Ενεργειών)
- Κβαντική Φυσική
Σύντομη Ιστορία της Φυσικής
Ήδη από την Aρχαιότητα, η συμπεριφορά της ύλης αποτέλεσε αντικείμενο στοχασμού και μελέτης: γιατί τα αντικείμενα πέφτουν όταν αφεθούν ελεύθερα, γιατί διαφορετικά υλικά παρουσιάζουν διαφορετικές ιδιότητες, κ.ο.κ. Άλλα μεγάλα ερωτήματα αφορούσαν το χαρακτήρα του Σύμπαντος, για παράδειγμα το σχήμα της Γης και οι κινήσεις των ουρανίων σωμάτων, όπως ο Ήλιος και η Σελήνη. Για την εξήγηση των φαινομένων αυτών προτάθηκαν αρκετές θεωρίες. Οι περισσότερες είχαν φιλοσοφική βάση και χροιά (και μερικές φορές, θρησκευτικές ή μεταφυσικέςκαταβολές), και στηρίζονταν λίγο ή καθόλου στη συστηματική πειραματική δοκιμασία, με την έννοια που έχει σήμερα ο όρος. Ωστόσο, οι αστρονομικές παρατηρήσεις (αρχικά δια γυμνού οφθαλμού) χρησίμευαν πάντα ως οδηγός για τα κοσμολογικά μοντέλα.
Υπήρξαν βεβαίως και αρκετές αξιοσημείωτες εξαιρέσεις, προάγγελλοι της επιστημονικής μεθόδου. Για παράδειγμα, ο αρχαίος Έλληνας μαθηματικός Αρχιμήδης συνέταξε πολλές ποσοτικά ακριβείς μελέτες της Μηχανικής και της Υδροστατικής.
Το έργο του Πτολεμαίου και του Αριστοτέλη (Φυσική) επίσης ερχόταν συχνά σε αντίθεση με την καθημερινή παρατήρηση. Για παράδειγμα, ένα βέλος που συνεχίζει να ταξιδεύει δια μέσου του αέρα αφού εκτοξευτεί από το τόξο έρχεται σε αντίφαση με τη διαβεβαίωση του Αριστοτέλη ότι "η φυσική κατάσταση όλων των σωμάτων είναι η ακινησία" (με άλλα λόγια, ότι απαιτείται μια δύναμη για να διατηρείται ένα σώμα σε κίνηση).
Η προθυμία να επανεξετάσουν τις παραδεδομένες αλήθειες και η έρευνα για νέες απαντήσεις οδήγησε σε μια περίοδο ανθηρής επιστημονικής δραστηριότητας, γνωστή ως Επιστημονική Επανάσταση. Οι απαρχές της εντοπίζονται στην ανακάλυψη εκ νέου από τους Ευρωπαίους των χειρογράφων του Αριστοτέλη κατά τον 12ο και τον 13ο αιώνα. Κορωνίδα της περιόδου αυτής αποτέλεσε η έκδοση των Philosophiae Naturalis Principia Mathematica (Μαθηματικές Αρχές της Φυσικής Φιλοσοφίας) το 1687 από τον Ισαάκ Νεύτωνα.
Οι περισσότεροι ιστορικοί (π.χ., ο Χάουαρντ Μάργκολις - Howard Margolis) τοποθετούν την αρχή της Επιστημονικής Επανάστασης στα 1543, οπότε και εκδόθηκε το πρώτο αντίτυπο του βιβλίου De Revolutionibus Orbium Coelestium |De Revolutionibus (Περί της Περιστροφής των Ουρανίων Σφαιρών), του Πολωνού αστρονόμου Νικολάου Κοπέρνικου, γραμμένο δώδεκα χρόνια νωρίτερα (το βιβλίο δεν εκδόθηκε έως τη μέρα του θανάτου του). Στο βιβλίο διατυπωνόταν η θέση ότι η Γη εκτελεί περιφορά γύρω από τον Ήλιο, καθώς και ότι περιστρέφεται γύρω από τον άξονά της.
Άλλα σημαντικά επιτεύγματα κατά την περίοδο αυτή σημειώθηκαν από τους: Γαλιλαίο, Huygens, Kepler, Pascal κ.α.
Στις αρχές του 17ου αιώνα, ο Γαλιλαίος πρωτοστάτησε στην καθιέρωση πειραματικών μεθόδων με σκοπό την επαλήθευση φυσικών θεωριών, μια ιδέα που αποτελεί το κλειδί της επιστημονικής μεθόδου. Ο Γαλιλαίος διατύπωσε και τεκμηρίωσε με επιτυχία αρκετές υποθέσεις στο πεδίο της Δυναμικής, ιδίως δε το νόμο της Αδράνειας. Στα 1687, ο Νεύτων δημοσίευσε τα Philosophiae Naturalis Principia Mathematica (Μαθηματικές Αρχές της Φυσικής Φιλοσοφίας), θεμελιώνοντας με λεπτομέρειες δύο περιεκτικές και επιτυχημένες φυσικές θεωρίες: τους νόμους της κίνησης του Νεύτωνα, από τους οποίους αναπτύχθηκε η Κλασσική Μηχανική και τον Νόμο της Παγκόσμιας Έλξης του Νεύτωνα, ο οποίος περιγράφει τη θεμελιώδη δύναμη της βαρύτητας. Και οι δύο θεωρίες ήταν σε καλή συμφωνία με το πείραμα. Οι Μαθηματικές Αρχές περιλάμβαναν ωστόσο και αρκετές θεωρίες σχετικά με τη Ρευστοδυναμική. Η Κλασσική Μηχανική επεκτάθηκε αργότερα σε μεγάλο βαθμό από τους Lagrange, Hamilton κ.α., που παρήγαγαν νέο φορμαλισμό, αρχές και πορίσματα. Ο Νόμος της Παγκόσμιας Έλξης εγκαινίασε τον κλάδο της Αστροφυσικής, ο οποίος περιγράφει τα Αστρονομικά φαινόμενα με βάση φυσικές θεωρίες.
Μετά τη θεμελίωση της Κλασσικής Μηχανικής από τον Νεύτωνα, το επόμενο μεγάλο πεδίο έρευνας στη Φυσική αφορούσε τη φύση του ηλεκτρισμού. Παρατηρήσεις κατά τον 17ο και 18ο αιώνα από επιστήμονες όπως ο Robert Boyle, ο Stephen Gray και ο Φραγκλίνος έβαλαν τα θεμέλια της κατοπινής έρευνας. Επίσης, οι παρατηρήσεις αυτές οδήγησαν στη βασική κατανόηση του ηλεκτρικού φορτίου και του ηλεκτρικού ρεύματος.
Στα 1821, ο Michael Faraday ενοποίησε τη μελέτη του Μαγνητισμού με τη μελέτη του ηλεκτρισμού, δείχνοντας πειραματικά ότι ένας κινούμενος μαγνήτης επάγει Ηλεκτρικό Ρεύμα σε έναν αγωγό. Ο Faraday επίσης συνέλαβε τη φυσική έννοια που μετέπειτα ονομάστηκε Ηλεκτρομαγνητικό Πεδίο. Ο James Clerk Maxwell ανέπτυξε αυτή την ιδέα, στα 1864, καταλήγοντας σε ένα σύστημα 20 συζευγμένων εξισώσεων που εξηγούσαν τις αλληλεπιδράσεις μεταξύ ηλεκτρικών και μαγνητικών πεδίων. Οι 20 αυτές εξισώσεις ανήχθησαν αργότερα, με τη χρήση διανυσματικού λογισμού, σε ένα σύστημα τεσσάρων εξισώσεων.
Πέρα από τα συνήθη ηλεκτρομαγνητικά φαινόμενα, οι εξισώσεις του Maxwell μπορούν επίσης να χρησιμοποιηθούν για να περιγράψουν το φως. Η παρατήρηση αυτή επιβεβαιώθηκε με την ανακάλυψη των ραδιοκυμάτων στα 1888 από τον Heinrich Hertz, καθώς και στα 1895, όταν ο Wilhelm Roentgen εντόπισε τις Aκτίνες Χ. Η περιγραφή του φωτός με όρους ηλεκτρομαγνητικού πεδίου αποτέλεσε το έναυσμα για τη δημοσίευση, από τον Einstein της Ειδικής Θεωρίας της Σχετικότητας. Η θεωρία αυτή ενοποίησε την Κλασσική Μηχανική με τον Ηλεκτρομαγνητισμό. Η Ειδική Θεωρία της Σχετικότητας ενοποιεί το χώρο και το χρόνο σε μία και μόνη οντότητα, τον Χωρόχρονο. Η Σχετικότητα ορίζει έναν νεό κανόνα μετασχηματισμού μεταξύ αδρανειακών συστημάτων αναφοράς απ' ό,τι η κλασική μηχανική, αυτό προϋπέθετε την ανάπτυξη σχετικιστικής μηχανικής ως αντικατάστατο της κλασσικής μηχανικής. Στην περιοχή των χαμηλών (σχετικά) ταχυτήτων, οι δύο θεωρίες συμφωνούν. Ο Αινστάιν επεξέτεινε περαιτέρω την Ειδική Σχετικότητα συμπεριλαμβάνοντας τη Βαρύτητα στους υπολογισμούς του. Δημοσίευσε την Γενική Σχετικότητα στα 1915.
Μέρος της θεωρίας της Γενικής Σχετικότητας αποτελούν οι πεδιακές εξισώσεις του Einstein. Αυτές περιγράφουν το πώς ο τανυστής ενέργειας-ορμής καμπυλώνει τον χωρόχρονο, ενώ όταν συνδυαστούν με την "γεωδαισιακή εξίσωση" σχηματίζουν τη βάση της Γενικής Σχετικότητας. Περαιτέρω επεξεργασία των πεδιακών εξισώσεων του Αινστάιν παρήγαγε αποτελέσματα που προέβλεπαν τη Μεγάλη Έκρηξη, τις μαύρες τρύπες, καθώς και το διαστελλόμενο σύμπαν. Ο Einstein πίστευε (όπως και η πλειοψηφία των συγχρόνων του επιστημόνων) σε ένα στατικό σύμπαν και επιχείρησε να τροποποιήσει τις εξισώσεις του ώστε να επιτύχει κάτι τέτοιο. Ωστόσο, μέχρι το 1927, οι αστρονόμοι αναζητούσαν ενδείξεις για τη διαστολή του σύμπαντος, οι οποίες πράγματι βρέθηκαν στα 1929 από τον Edwin Hubble.
Από τον 18ο αιώνα και μετά ξεκινά η ανάπτυξη της Θερμοδυναμικής από τον Robert Boyle, τον [[Young|Thomas Young) και πολλούς άλλους. Στα 1773, ο Bernoulli συνδύασε στατιστικά επιχειρήματα με την κλασική μηχανική για να συνάγει θερμοδυναμικά αποτελέσματα, εγκαινιάζοντας τον κλάδο της Στατιστικής Μηχανικής. Στα 1798, ο Benjamin Thompson κατέδειξε τη μετατροπή μηχανικού έργου σε θερμότητα, ενώ στα 1847 ο James Joule διατύπωσε το νόμο της διατήρησης της ενέργειας, τόσο σε μορφή θερμότητας όσο και σε μορφή μηχανικής ενέργειας.
Στα 1895, ο Roedgen ανακάλυψε τις ακτίνες Χ, που τελικά αποδείχτηκε ότι δεν είναι παρά υψίσυχνη ηλεκτρομαγνητική ακτινοβολία. Η ραδιενέργεια ανακαλύφθηκε στα 1896 από τον Henri Becquerel, και μελετήθηκε περαιτέρω από τους Marie Curie, Pierre Curie και άλλους. Έτσι εγκαινιάστηκε ο κλάδος της Πυρηνικής Φυσικής.
Στα 1897, ο [[Thomson|J.J. Thomson) ανακάλυψε το ηλεκτρόνιο, το στοιχειώδες σωματίδιο που είναι ο φορέας του ηλεκτρικού ρεύματος στα ηλεκτρικά κυκλώματα. Στα 1904, πρότεινε το πρώτο μοντέλο του ατόμου, γνωστό με την (εκλαϊκευτική) ονομασία ατομικό μοντέλο του σταφιδόψωμου. (Η ύπαρξη ατόμων είχε ήδη προταθεί από το 1808 από τον [[Dalton|John Dalton)).
Ο [[Becquerel|Henri Becquerel) ανακάλυψε συμπτωματικά τη ραδιενέργεια στα 1896. Τον επόμενο χρόνο, ο Thomson ανακάλυψε το ηλεκτρόνιο. Οι ανακαλύψεις αυτές διέψευσαν την υπόθεση πολλών φυσικών, ότι τα άτομα ήταν οι έσχατες θεμελιώδεις δομικές μονάδες της ύλης και παρακίνησαν σε περαιτέρω μελέτη της δομής των ατόμων.
Το 1900, ο Max Planck δημοσίευσε μια εξήγηση για το φαινόμενο της "ακτινοβολίας μέλανος σώματος". Η εξίσωσή του προϋπέθετε ότι η ακτινοβολία είναι κβαντισμένη στη φύση, δηλαδή εκπέμπεται κατά διακριτά πακέτα. Η υπόθεση αυτή αποτέλεσε το εναρκτήριο επιχείρημα στο οικοδόμημα που έμελλε να γίνει η Κβαντική Μηχανική.
Κατά τη δεκαετία του 1920, ο Erwin Schrödinger, ο Werner Heisenberg και ο Max Born πέτυχαν να διατυπώσουν μια συνεπή εικόνα της χημικής συμπεριφοράς της ύλης και μια πλήρη θεωρία της ηλεκτρονικής δομής του ατόμου, ως λογικό επακόλουθο της κβαντικής θεωρίας.
Οι Schwinger, Tomonaga και Feynmann ήταν σε θέση να εξηγήσουν τη μετατόπιση Lamb (Lamb shift) χρησιμοποιώντας την Κβαντική Πεδιακή Θεωρία και την Kβαντική Hλεκτροδυναμική, μέχρι τη δεκαετία του 1940. Το 1959, ο Φάινμαν διατύπωσε την υπόθεση ότι είναι εφικτός ο χειρισμός της ύλης στο ατομικό επίπεδο, εγκαινιάζοντας έτσι το πεδίο της Νανοτεχνολογίας.
Το 1911, ο [[Rutherford|Ernest Rutherford), βασιζόμενος σε πειράματα σκέδασης, συμπέρανε την ύπαρξη ενός συμπαγούς και εξαιρετικά πυκνού ατομικού πυρήνα, ο οποίος αποτελείται από θετικά φορτισμένα συστατικά που ονομάστηκαν πρωτόνια. Τo νετρόνιο, το ουδέτερο (αφόρτιστο) συστατικό των πυρήνων, δεν ανακαλύφθηκε παρά το 1932, από τον James Chadwick.
Η ισοδυναμία μάζας και ενέργειας (Αινστάιν, 1905) επαληθεύτηκε με δραματικό τρόπο κατά τη διάρκεια του Δευτέρου Παγκοσμίου Πολέμου, καθώς και τα δύο στρατόπεδα διεξήγαγαν έρευνες στην Πυρηνική Φυσική, με σκοπό την κατασκευή πυρηνικής βόμβας. Το Γερμανικό εγχείρημα, του οποίου ηγείτο ο Χάιζεμπεργκ, κατέληξε σε αποτυχία, ενώ το Συμμαχικό Σχέδιο Μανχάτταν πέτυχε το στόχο του. Στην Αμερική, μια ομάδα με επικεφαλής τον Fermi(Enrico Fermi παρήγαγε την πρώτη ανθρωπογενή αλυσσιδωτή πυρηνική αντίδραση στα 1942, ενώ στα 1945 πυροδοτήθηκε η πρώτη στον κόσμο πυρηνική εκρηκτική ύλη στην περιοχή Τρίνιτυ, κοντά στο Αλαμογκόρντο του Νέου Μεξικού.
Από το 1900 και μετά, οι Planck, Αινστάιν, Bohr και άλλοι άρχισαν να αναπτύσσουν κβαντικές θεωρίες για να εξηγήσουν διάφορα "ανώμαλα" πειραματικά αποτελέσματα, εισάγοντας διακριτά ενεργειακά επίπεδα. Τόσο ο Βέρνερ Χάιζεμπεργκ στα 1925, όσο και οι Έρβιν Σρέντινγκερ και Ντιράκ στα 1926, διατύπωσαν φορμαλιστικά την Κβαντομηχανική, η οποία αποσαφήνιζε τις κβαντικές θεωρίες που είχαν προηγηθεί. Στην κβαντομηχανική, τα αποτελέσματα των φυσικών μετρήσεων είναι εγγενώς πιθανοκρατικά και η θεωρία παρέχει μεθόδους για τον υπολογισμό των πιθανοτήτων αυτών. Περιγράφει με επιτυχία τη συμπεριφορά της ύλης στις μικροσκοπικές κλίμακες.
Η κβαντομηχανική μας έδωσε επίσης τα θεωρητικά εργαλεία για τη μελέτη της Φυσικής της Συμπυκνωμένης Ύλης, η οποία μελετά τη φυσική συμπεριφορά των στερεών και υγρών σωμάτων, συμπεριλαμβανομένων και φαινομένων όπως η κρυσταλλική δομή, η ημιαγωγιμότητα και η υπεραγωγιμότητα. Ανάμεσα στους πρωτοπόρους της συμπυκνωμένης ύλης συγκαταλέγεται ο [[Bloch|Felix Bloch), ο οποίος διατύπωσε μια κβαντομηχανική περιγραφή της συμπεριφοράς των ηλεκτρονίων στις κρυσταλλικές δομές το 1928.
Η Κβαντική Πεδιακή Θεωρία διατυπώθηκε με σκοπό να επεκτείνει την κβαντική μηχανική, ώστε να είναι συμβατή με την ειδική σχετικότητα. Κατέληξε στη σημερινή της μορφή προς το τέλος της δεκαετίας του 1940 χάρη στην εργασία των Ρίτσαρντ Φάινμαν, Julian Schwinger, Τομονάγκα και Freeman Dyson. Αυτοί διατύπωσαν τη θεωρία της Κβαντικής Ηλεκτροδυναμικής, η οποία περιγράφει την ηλεκτρομαγνητική αλληλεπίδραση. Η κβαντική θεωρία πεδίου παρείχε το εννοιολογικό πλαίσιο της σύγχρονης Σωματιδιακής Φυσικής, η οποία μελετά τις θεμελιώδεις δυνάμεις της φύσης και τα στοιχειώδη σωμάτια. Τη δεκαετία του 1950, οι C. N. Yang και T. D. Lee ανακάλυψαν μια αναπάντεχη ασυμμετρία στη διάσπαση ενός υποατομικού σωματιδίου. Στα 1954, οι Yang Chen Ning και Robert Mills ανέπτυξαν την ομώνυμη θεωρία που επέκτεινε τις θεωρίες βαθμίδας η οποία παρείχει το εννοιολογικό πλαίσιο για το Καθιερωμένο Μοντέλο (Standard Model). Το Καθιερωμένο Μοντέλο ολοκληρώθηκε τη δεκαετία του 1970 και περιγράφει επιτυχώς σχεδόν όλα τα στοιχειώδη σωμάτια που έχουν παρατηρηθεί μέχρι σήμερα.
Οι δύο μείζονες θεωρίες της φυσικής του 20ού αιώνα, η γενική σχετικότητα και η κβαντομηχανική, δεν είναι προς το παρόν συμβατές μεταξύ τους. Η Γενική Σχετικότητα περιγράφει το Σύμπαν στην κλίμακα των πλανητών και των πλανητικών συστημάτων, ενώ η κΚαντομηχανική βρίσκει εφαρμογή στις υπο-ατομικές κλίμακες. Αυτό το χάσμα προσπαθεί να γεφυρώσει η Χορδιακή Θεωρία, η οποία αντιμετωπίζει τον χωρόχρονο ως μια πολλαπλότητα, όχι σημείων, αλλά μονοδιάστατων αντικειμένων, που ονομάζονται Χορδές. Οι Χορδές αυτές έχουν ιδιότητες παρόμοιες με τις κοινές χορδές (π.χ. τάση και δόνηση). Είναι πολλά υποσχόμενες θεωρίες, που όμως δεν έχουν δώσει ακόμη πειραματικά ελέγξιμα αποτελέσματα. Η έρευνα για την πειραματική επιβεβαίωση της θεωρίας χορδών βρίσκεται σε εξέλιξη.
Τα Ηνωμένα Έθνη είχαν ανακηρύξει το έτος 2005 Παγκόσμιο Έτος Φυσικής.
Σταθμοί στην Ιστορία της Φυσικής
~580 πΧ Ανακαλύπτονται ο Ηλεκτρισμός και ο Μαγνητισμός από το Θαλή.
440 π.Χ. Διατυπώνεται η έννοια του ατόμου από το Δημόκριτο.
350 π.Χ. Ο Αριστοτέλης καταγράφει μία επιτομή των απόψεων της εποχής του αλλά και δικές του πρωτότυπες απόψεις σχετικά με τη Φύση.
260 π.Χ. Ο Αρχιμήδης διατυπώνει τον νόμο της άνωσης και το θεώρημα των μοχλών της Στατικής.
140 μ.Χ. Περιγράφεται το γεωκεντρικό Σύμπαν από τον Κλαύδιο Πτολεμαίο.
1025 Τίθενται οι πρώτες αρχές της Οπτικής από τον άραβα Αλχάζεν.
1180 Ανακαλύπτεται η πυξίδα από τον άγγλο Α. Neckam και εφαρμόζεται στη ναυσιπλοία. Αρχή της παγκόσμιας κυριαρχίας των Ευρωπαίων.
1454 Ανακάλυψη της Τυπογραφίας από τον Γουτεμβέργιο. Ένας από τους μεγαλύτερους σταθμούς στην καταγραφή και κυρίως στη διάδοση των ιδεών.
1543 O N. Κοπέρνικος εισηγείται την Ηλιοκεντρική Θεωρία. Αφετηρία της επιστημονικής επανάστασης στην Αστρονομία.
1583 Τίθενται τα θεμέλια της Υδροστατικής από τον ολλανδό μαθηματικό S. Stevin.
1589 Ο Γαλιλαίος μελετά την ελεύθερη πτώση και διατυπώνει τους αντίστοιχους νόμους. Είναι ο πρώτος που ακολούθησε τη διαδικασία του πειράματος και της γενίκευσης των πειραματικών δεδομένων, για τη διατύπωση θεωρίας ορίζοντας έτσι τις παραμέτρους της πειραματικής επιστήμης. Γι' αυτό θεωρείται ο ιδρυτής της σύγχρονης Φυσικής.
1590 Εφευρίσκεται το μικροσκόπιο από τον Ολλανδό Zacharias Janssen
1592 Κατασκευάζεται το πρώτο θερμόμετρο από τον Γαλιλαίο. Ακριβή θερμόμετρα θα κατασκευαστούν 120 περίπου χρόνια αργότερα.
1608 Εφευρίσκεται τυχαία το τηλεσκόπιο από τον Ολλανδό Hans Lippershey. Ένα χρόνο αργότερα κατασκεύασε τηλεσκόπιο και ο Γαλιλαίος.
1609 Διατυπώνονται από τον Kepler οι τρεις ομώνυμοι νόμοι, που περιγράφουν τις πλανητικές τροχιές.
1620 Περιγράφεται από τον άγγλο φιλόσοφο F. Bacon η «επιστημονική μέθοδος».
1643 Ανακάλυψη του βαρομέτρου από τον Trricelli. Μελέτη της ατμοσφαιρικής πίεσης.
1666 Πειράματα του Newton σχετικά με το φώς αποδείχνουν ότι το λευκό φως είναι το αποτέλεσμα της σύνθεσης των χρωμάτων της ίριδας.
1668 Διατυπώνεται ο νόμος διατήρησης της ορμής από τον Άγγλο μαθηματικό J. Wallis.
1669 Ο Newton και ο Leibnitz ανεξάρτητα ο ένας από τον άλλο, ιδρύουν τον «απειροστικό λογισμό», μαθηματική τεχνική με πολύ μεγάλη σημασία για τη μετέπειτα εξέλιξη της Φυσικής.
1675 Η πρώτη μέτρηση της ταχύτητας του φωτός από το Δανό αστρονόμο Ο. Roemer.
1687 Σταθμός στην ιστορία της Φυσικής! Ο Newton διατυπώνει τους τρεις νόμους της κίνησης (νόμος της αδράνειας, νόμος δύναμης - επιτάχυνσης και αξίωμα δράσης - αντίδρασης) και το νόμο παγκόσμιας έλξης. Η εργασία του δημοσιεύεται στο βιβλίο του "Principia" ("Αρχές"), που θεωρείται το σημαντικότερο βιβλίο Φυσικής, που γράφτηκε ποτέ.
1706 Κατασκευάζεται η πρώτη μηχανή παραγωγής ηλεκτρικών φορτίων, από τον Άγγλο φυσικό F. Hauksbee. Αρχίζουν τα πειράματα του στατικού ηλεκτρισμού.
1714 Ο Fahrenheit κατασκευάζει το υδραργυρικό θερμόμετρο. Στην κλίμακα Fahrenheit η θερμοκρασία πήξης και βρασμού του νερού είναι αντίστοιχα 32 και 212 βαθμοί. Στα 1742 ο Σουηδός Celsius πρότεινε την εκατονταβάθμια κλίμακα στην οποία οι αντίστοιχες θερμοκρασίες είναι 0 και 100 οC. Η κλίμακα Κελσίου χρησιμοποιείται σήμερα σε ολόκληρο τον κόσμο εκτός των ΗΠΑ.
1738 Διατύπωση της κινητικής θεωρίας των αερίων από τον Ελβετό μαθηματικό Bernoulli.
1774 Ο Γάλλος Lavoisier ερμηνεύει το φαινόμενο της καύσης των σωμάτων και εισηγείται ότι ο ατμοσφαιρικός αέρας αποτελείται κατά 20% από οξυγόνο και κατά 80% από άζωτο.
1781 Ανακάλυψη της ατμομηχανής από τον Σκώτο Watt. Αρχίζει η Bιομηχανική Eπανάσταση.
1783 Ανακαλύπτεται το αερόστατο από τους αδελφούς Μονγκολφιέ.
1789 Διατύπωση της αρχής διατήρησης της μάζας κατά τα χημικά φαινόμενα, από τον Α.L.Lavoisier.
1798 Υπολογισμός της μάζας της Γης από το Βρετανό χημικό Cavendish.
1800 Εφεύρεση της ηλεκτρικής στήλης από τον Volta Ηλεκτρόλυση από τους Nicholson και Ritter.
1801 Ανακάλυψη της υπέρυθρης (από το βρετανό καθηγητή μουσικής [!] W. Hershel) και της υπεριώδους ακτινοβολίας (από το γερμανό χημικό J.W.Ritte)
- Ο Άγγλος φυσικός Young απέδειξε την κυματική φύση του φωτός.
1803 Διατυπώνεται ξανά (μετά το Δημόκριτο) η ατομική θεωρία από τον Άγγλο χημικό Dalton.
1811 Διατυπώνεται από τον Ιταλό φυσικό Avogadro η ομώνυμη υπόθεση.
1820 Ο Δανός φυσικός Oersted εκτελεί το πρώτο πείραμα ηλεκτρομαγνητισμού. Ο Γάλλος φυσικός A.-M. Ampere αποδείχνει ότι ένας σπειροειδής αγωγός συμπεριφέρεται σαν ραβδόμορφος μαγνήτης, όταν διαρρέεται από ηλεκτρικό ρεύμα.
1821 Ο Άγγλος φυσικός M. Faraday ανακαλύπτει το φαινόμενο της ηλεκτρομαγνητικής επαγωγής.
1827 Ο G. S. Ohm διατυπώνει τον ομώνυμο νόμο.
- Κίνηση Brown. Η τελική απόδειξη της ύπαρξης των ατόμων. Διαπιστώθηκε στα 1827 από το Βρετανό βοτανολόγο R. Brown. Ερμηνεύτηκε 80 σχεδόν χρόνια αργότερα από τον A. Einstein.
1831 Επινόηση της ηλεκτρογεννήτριας από το M. Faraday.
- Επινόηση του ηλεκτροκινητήρα από τον Αμερικανό φυσικό Henry.
1843 Η θερμότητα αναγνωρίζεται ως μορφή ενέργειας. Υπολογίζεται από τον Βρετανό φυσικό Joule το μηχανικό ισοδύναμο της θερμότητας.
1844 Κατασκευάζεται ο τηλέγραφος από τον Αμερικανό ζωγράφο [!] Morse. Για πρώτη φορά η αποστολή και η λήψη ενός μηνύματος γίνονται σχεδόν ταυτόχρονα. Λίγα χρόνια νωρίτερα ο Μορς είχε επεξεργαστεί ένα κώδικα κατά τον οποίο τα γράμματα του αλφαβήτου αντιστοιχίζονται σε συνδυασμούς από τελείες και παύλες. Ο κώδικας αυτός στον τηλέγραφο μετατρέπεται σε αποστολή και λήψη ηλεκτρικών παλμών μικρής (τελείες) και μεγαλύτερης (παύλες) διάρκειας.
1847 Διατύπωση της αρχής διατήρησης της ενέργειας από το Γερμανό φυσικό Helmholtz. Η αρχή αυτή θα είναι από τότε και στο εξής η βάση πάνω στην οποία θα στηριχτεί η ανάπτυξη της Φυσικής.
1849 Μέτρηση της ταχύτητας του φωτός, με πείραμα, που οργανώθηκε και εκτελέστηκε από το Γάλλο φυσικό Fizeau εξ ολοκλήρου στην επιφάνεια της Γης. Τον επόμενο χρόνο ο Foucault, μαθητής του Fizeau βελτιώνοντας τη μέθοδο, υπολόγισε την ταχύτητα του φωτός σε άλλα διαφανή μέσα.
1859 Ο Γερμανός φυσικός G. Kirchhoff ανακοινώνει ότι το γραμμικό φάσμα ενός στοιχείου είναι η ταυτότητά του. Το δεδομένο αυτό συνέβαλλε στην ανακάλυψη νέων στοιχείων αλλά και στη μελέτη σωμάτων, στα οποία είναι αδύνατη η προσπέλαση, όπως τα μακρινά άστρα.
- Διατυπώνεται από τον άγγλο φυσικό J.C.Maxwell η «κινητική θεωρία των αερίων», σύμφωνα με την οποία η συμπεριφορά ενός αερίου μπορεί να αναχθεί στη στατιστική μελέτη της μηχανικής συμπεριφοράς των μορίων του.
1865 Ο Maxwell διατυπώνει τις τέσσερις εξισώσεις, που φέρουν το όνομά του, με τις οποίες κατόρθωσε να εκφράσει όλα τα φαινόμενα του ηλεκτρισμού και του μαγνητισμού. Η θεωρία του ονομάστηκε «ηλεκτρομαγνητική θεωρία» και σύμφωνα μ' αυτήν ο ηλεκτρισμός και ο μαγνητισμός αποτελούν μία και μόνο φυσική οντότητα.
1869 Δημοσιοποίηση του περιοδικού πίνακα των στοιχείων από το Ρώσο χημικό Mendeleyev. Πρόκειται για την πιο επιτυχημένη ταξινόμηση των στοιχείων, η οποία στην ολοκληρωμένη της μορφή χρησιμοποιείται και σήμερα.
1876 Ξεκινώντας από τους νόμους των αερίων ο Γερμανός μηχανικός Otto κατασκεύασε τον τετράχρονο κινητήρα εσωτερικής καύσεως. Αρχή της εποχής του αυτοκινήτου. (Το πρώτο αυτοκίνητο κατασκευάστηκε από το Γερμανό μηχανικό C. F. Benz στα 1885) Τα αυτοκίνητα μέχρι σήμερα χρησιμοποιούν τον κινητήρα αυτό, ο οποίος βέβαια έχει υποστεί σημαντικές δευτερεύουσες τροποποιήσεις, ώστε να βελτιωθεί η απόδοσή του και να γίνει φιλικότερος προς το περιβάλλον.
1879 Ανακαλύπτεται από τον Edison ο ηλεκτρικός λαμπτήρας πυρακτώσεως, που στηρίζεται στη θερμότητα που αναπτύσσεται σε έναν αγωγό όταν διαρρέεται από ηλεκτρικό ρεύμα.
1880 Ο W. Crookes εξήγησε ότι οι καθοδικές ακτίνες που είχαν παραχθεί μέσα σε σωλήνες κενού τέσσερα χρόνια νωρίτερα από τον E. Goldstein, είναι δέσμη σωματιδίων. Αρκετά χρόνια αργότερα θα ανακαλυφθεί η τηλεόραση, βάση λειτουργίας της οποίας θα αποτελέσουν οι ακτίνες αυτές.
1883 Κατασκευάζεται ηλεκτροκινητήρας εναλλασσόμενου ρεύματος από τον Κροάτη ηλεκτρολόγο N. Tesla. Έναρξη της κυριαρχίας του εναλλασσόμενου ρεύματος. Το εναλλασσόμενο ρεύμα έχει σημαντικά πλεονεκτήματα έναντι του συνεχούς, στον τομέα της μεταφοράς ηλεκτρικής ενέργειας. Χάρη στο εναλλασσόμενο ρεύμα εξηλεκτρίστηκε το μεγαλύτερο κατοικημένο μέρος της Γης.
1887 Το πείραμα Michelson - Morley. Η πιο δημιουργική αποτυχία (!) στην ιστορία της Φυσικής. Το πείραμα Μ-Μ απέτυχε να δείξει την ύπαρξη του αιθέρα, που ήταν ισχυρή υπόθεση εκείνα τα χρόνια. Βαθύτερη κατανόηση της Ηλεκτρομαγνητικής (ΗΜ) θεωρίας έδειξε ότι το ΗΜ κύμα είναι μία αυτοϋποστηριζόμενη διαδικασία και έτσι η υπόθεση του αιθέρα (η οποία προϋπήρχε της ΗΜ θεωρίας) δεν χρειάζεται. Η ανάλυση της αποτυχίας του πειράματος ΜΜ οδήγησε στην υπόθεση της σταθερής ταχύτητας του φωτός ανεξάρτητα από την ταχύτητα του παρατηρητή, που αναδείχτηκε στο ένα από τα αξιώματα της ειδικής σχετικότητας.
1888 Παραγωγή ραδιοκυμάτων από τον Γερμανό φυσικό H. R. Hertz. Οι ασύρματες τηλεπικοινωνίες επί θύραις!
1895 Ο Γερμανός φυσικός W.C.Roentgen ανακαλύπτει τις ακτίνες Χ. Η Ιατρική απεκόμεσε μέγιστα ωφέλη από την ανακάλυψη αυτή ενώ ο ίδιος κέρδισε το βραβείο Nobel λίγα χρόνια αργότερα.
1896 Ο Γάλλος φυσικός A. H. Becquerel μελετώντας χημικές ενώσεις του Ουρανίου ανακάλυψε τη ραδιενέργεια. Ένα χρόνο αργότερα η Μαρία Κιουρί, γαλλίδα πολωνικής καταγωγής απέδειξε ότι η ραδιενέργεια εκπέμπεται από το Ουράνιο.
1897 Επιδρώντας στις καθοδικές ακτίνες με ηλεκτρικό και μαγνητικό πεδίο ο J.J.Thomson απέδειξε ότι αποτελούνται από φορτισμένα σωματίδια, των οποίων υπολόγισε το ειδικό φορτίο και τα οποία ονόμασε «ηλεκτρόνια».
1898 Η Μαρία και ο Πιερ Κιουρί ανακαλύπτουν δύο νέα ραδιενεργά στοιχεία, το Πολώνιο και το Ράδιο.
1900 Ο Γερμανός φυσικός Max Planck ιδρύει την «κβαντική θεωρία» εισηγούμενος ότι η ενέργεια του φωτός εκπέμπεται διαδίδεται και απορροφάται κατά στοιχειώδεις ποσότητες τις οποίες ονόμασε «κβάντα».
Οι Becquerel, Rutherford και Villard, μελετούν τη φύση των ακτίνων, που εκπέμπονται από τα ραδιενεργά υλικά. Υπάρχουν τρία είδη ακτίνων: Οι ακτίνες α, οι ακτίνες β, που αποτελούνται από ηλεκτρόνια και οι ακτίνες γ, που είναι μίαΗλεκτρομαγνητική Ακτινοβολία. Λίγο αργότερα θα διαπιστωθεί ότι οι ακτίνες α αποτελούνται από πυρήνες He.
1901 Επινόηση της ραδιοεπικοινωνίας από τον Ιταλό G. Markoni. Ραδιοκύματα που εξεπέμφθησαν από τη νοτιοδυτική Αγγλία ελήφθησαν στη Νέα Γη, ανατολικό άκρο της Β. Αμερικής.
1902 Ανακαλύφθηκε η στρατόσφαιρα από το Γάλλο μετεωρολόγο de Bort. Την ίδια χρονια οι Βρεττανοί Kennelly και Heaviside πρότειναν ανεξάρτητα ο ένας από τον άλλο την ύπαρξη ενός στρώματος της ανώτερης ατμόσφαιρας, που ανακλά τα ραδιοκύματα. Στα 1924 ανακαλύφθηκε από το Βρεταννό φυσικό E. Appleton πάνω από τη στρατόσφαιρα και σε ύψος περίπου 80 km η περιοχή αυτή, που ονομάστηκε ιονόσφαιρα.
Παρατηρείται το φωτοηλεκτρικό φαινόμενο, κατά το οποίο εκπέμπονται ηλεκτρόνια από τα μέταλλα όταν προσπέσει φως με συχνότητα μεγαλύτερη μιας κρίσιμης συχνότητας. Οι μέχρι τότε θεωρίες της Φυσικής αδυνατούν να εξηγήσουν το φαινόμενο.
1903 Επινόηση του Αεροπλάνου από τους αδελφούς Wright.
Θεωρητική επεξεργασία του τρόπου προώθησης, με τη χρήση πυραύλων από το Ρώσο φυσικό Κ. Tsiolkovsky. Οι φυσικοί αρχίζουν να σκέφτονται διαστημόπλοια, διαστημικούς σταθμούς, ταξίδια στο διάστημα. 55 χρόνια αργότερα θα αρχίσει η υλοποίηση των σκέψεων αυτών.
1904 Ο J. J. Thomson προτείνει την ιδέα ότι το άτομο είναι μία σφαίρα με ομοιόμορφα κατανεμημένο θετικό φορτίο, στην οποία είναι εμφυτευμένα ηλεκτρόνια.
Κατασκευάστηκε η δίοδος λυχνία, η πρώτη από μια σειρά λυχνιών κενού, που έκαναν δυνατή τη λειτουργία ηλεκτρονικών συσκευών.
1905 Διατύπωση της ειδικής θεωρίας της σχετικότητας από το Γερμανό φυσικό Α. Einstein. Στα πλαίσια της θεωρίας αυτής ενοποιούνται ο χώρος με το χρόνο και η μάζα με την ενέργεια. Ανατρέπεται η φυσική του Νewton η ισχύς της οποίας περιορίζεται μόνο σε ταχύτητες πολύ μικρότερες από την ταχύτητα του φωτός. Ο A. Einstein χρησιμοποιεί την κβαντική φυσική και εξηγεί το φωτοηλεκτρικό φαινόμενο. Η χρονιά του Einstein. Ο μεγάλος Φυσικός ερμηνεύει την κίνηση Brown, δεχόμενος την υπόθεση της ύπαρξης των μορίων και της διαρκούς κίνησής τους.
1906 Κατασκευάζεται ο πρώτος ραδιοφωνικός πομπός, που εκπέμπει υψίσυχνο ηλεκτρομαγνητικό κύμα, διαμορφωμένο από ηχητική πληροφορία. Στο ραδιοφωνικό δέκτη η διαμόρφωση αυτή μετατρέπεται πάλι σε ήχο.
1911 Ο Νεοζηλανδός φυσικός Ε. Rutherford προτείνει για το άτομο το πλανητικό μοντέλο, σύμφωνα με το οποίο το άτομο αποτελείται από τον πυρήνα, στον οποίο βρίσκεται σχεδόν ολόκληρη η μάζα και το θετικό φορτίο του ατόμου και τα ηλεκτρόνια, που περιφέρονται γύρω από τον πυρήνα, υπό την επίδραση της ηλεκτροστατικής έλξης.
Ο Σκώτος φυσικός C.T.Wilson επινόησε μια συσκευή, με την οποία είναι δυνατόν να ανιχνευτούν κινούμενα φορτισμένα σωματίδια και να ληφθούν πληροφορίες για τη μάζα τους. Η συσκευή μπορεί ακόμα να δείξει συγκρούσεις φορτισμένων σωματιδίων και να δώσει πληροφορίες για τα γεγονότα που συμβαίνουν πριν και μετά τη σύγκρουση.
Ο Αμερικανός φυσικός R.A.Millikan υπολογίζει το στοιχειώδες ηλεκτρικό φορτίο, φορέας του οποίου είναι το ηλεκτρόνιο.
Ο Ολλανδός φυσικός H. Onnes ανακαλύπτει το φαινόμενο της υπεραγωγιμότητας. Η εξήγηση του φαινομένου θα γίνει 70 χρόνια αργότερα.
1913 Ο Δανός φυσικός Niels Bohr εφαρμόζει την κβαντική θεωρία στο πλανητικό μοντέλο του ατόμου και προτείνει ένα βελτιωμένο μοντέλο για το άτομο.
Ανακαλύφθηκε από το Γάλλο φυσικό C. Fabry η οζονόσφαιρα. Πρόκειται για μία περιοχή της ατμόσφαιρας σε ύψη από 10 μέχρι 50 km με μεγάλη περιεκτικότητα σε όζον (τριατομικό οξυγόνο) που απορροφά το μεγαλύτερο μέρος της υπεριώδους ακτινοβολίας, που έρχεται στη Γη από τον Ήλιο και είναι επικίνδυνη για τους οργανισμούς.
1916 Διατυπώνεται η «γενική θεωρία της σχετικότητας» από τον A. Einstein. Πρόκειται για τη γενικευμένη θεωρία της βαρύτητας, η οποία μπορεί να εφαρμοστεί και στα ισχυρά βαρυτικά πεδία (πχ στο βαρυτικό πεδίο μιας μαύρης τρύπας) όπου η θεωρία της βαρύτητας του Newton αποτυγχάνει. Σήμερα η θεωρία αυτή χρησιμοποιείται σαν βασικό εργαλείο της κοσμολογίας.
1919 Η πρώτη τεχνητή πυρηνική αντίδραση από τον Rutherford.
Ο Βρετανός χημικός F.W.Aston βελτιώνοντας σημαντικά την τεχνική επίδρασης μαγνητικού πεδίου σε κινούμενα φορτισμένα σωματίδια του J.J.Thomson, ανακάλυψε το φασματογράφο μάζας.
1922 Ο Ρώσος μαθηματικός Α.Α.Φρήντμαν έλυσε τις εξισώσεις της γενικής θεωρίας της σχετικότητας και διατύπωσε την άποψη ότι το Σύμπαν διαστέλλεται. Αρκετά χρόνια αργότερα αστρονομικές παρατηρήσεις θα δικαιώσουν την άποψη αυτή.
1923 Ο Αμερικανός φυσικός A.H.Compton έδειξε ότι τα κύματα έχουν και σωματιδιακή υπόσταση.
Ο Γάλλος φυσικός De Broglie διατύπωσε τη θεωρητική άποψη ότι τα σωματίδια έχουν και κυματική υπόσταση. Λίγα χρόνια αργότερα αποδείχτηκε η ύπαρξη των «υλικών κυμάτων».
1925 Ενέργεια σύνδεσης: Ο πυρήνας του ατόμου έχει μικρότερη μάζα από το άθροισμα των μαζών των συστατικών του, όταν αυτά βρίσκονται σε ελεύθερη κατάσταση. Αρχίζει η αποκάλυψη της πυρηνικής ενέργειας. Τα σχετικά πειράματα έγιναν από το F.W.Aston στο φασματογράφο μάζας.
Γερμανός φυσικός W.K.Heisenberg εισηγείται την αντικατάσταση της τροχιάς του ηλεκτρονίου στο ατομικό μοντέλο, από την έννοια του τροχιακού.
Διαπιστώνεται πειραματικά η βαρυτική μετατόπιση των φωτεινών ακτίνων προς το ερυθρό. Το γεγονός, αυτό όπως και η καμπύλωση του φωτός από ισχυρά βαρυτικά πεδία, που είχε διαπιστωθεί λίγα χρόνια πριν, αποτελούν τεκμήρια ορθότητας της θεωρίας της γενικής σχετικότητας.
1926 Παρουσιάζεται η κυματική εξίσωση του Schroedinger.
Oι Max Born, E. Shhroedinger και W.K.Heisenberg θεμελιώνουν την κβαντομηχανική, η οποία εφαρμόζεται με επιτυχία στην ερμηνεία των φαινομένων της φυσικής των στοιχειωδών σωματιδίων. Η κβαντομηχανική και η θεωρία της σχετικότητας αποτελούν τα μεγάλα θεωρητικά θεμέλια της φυσικής του 20ού αιώνα.
1927 Διατυπώνεται από τον Heisenberg η αρχή της απροσδιοριστίας, σύμφωνα με την οποία δεν είναι δυνατόν να προσδιοριστούν ταυτόχρονα η θέση και η ορμή ενός υποατομικού σωματιδίου. Η αρχή αυτή, πλήρως αποδεκτή σήμερα, δημιούργησε σοβαρά ερωτήματα φυσικής αλλά και φιλοσοφικής υπόστασης.
Ο Βέλγος αστροφυσικός G. H. Lemaitre οδηγεί τη θεωρία του διαστελλόμενου Σύμπαντος στο λογικό της όριο: Αρχικά η ύλη του Σύμπαντος ήταν συμπυκνωμένη σε ένα υπέρπυκνο σώμα μικρών διαστάσεων το «κοσμικό αυγό», το οποίο εξερράγη. Έτσι άρχισε η ύπαρξη του σημερινού Σύμπαντος. Η έκρηξη αυτή ονομάστηκε «Μεγάλη Έκρηξη» (Big Bang).
1929 Ο Αμερικανός αστρονόμος E. Hubble, μετά από προσεκτικές παρατηρήσεις διαπιστώνει ότι κάθε γαλαξίας του ορατού τμήματος του Σύμπαντος απομακρύνεται από όλους τους άλλους. Το γεγονός αυτό αποτελεί πειραματική επιβεβαίωση του διαστελλόμενου Σύμπαντος.
Δύο φυσικοί, ο Άγγλος J. Cockcroft και ο Ιρλανδός E. Walton κατασκευάζουν τον πρώτο επιταχυντή σωματιδίων.
1930 Προβλέπεται θεωρητικά από το Βρετανό φυσικό P. Dirac η ύπαρξη της Αντιύλης.
Ο Αμερικανός φυσικός E. Lawrence κατασκευάζει τον πρώτο κυκλικό επιταχυντή σωματιδίων, το κύκλοτρο.
Κατασκευάζεται ο πρώτος υπολογιστής, εν μέρει ηλεκτρονικός, από τον Αμερικανό μηχανικό V. Bush.
1931 Ο W. Pauli (Αυστριακός φυσικός) προβλέπει θεωρητικά και εισηγείται την ύπαρξη ενός σωματιδίου ηλεκτρικά ουδέτερου και με ελάχιστη ή και μηδενική μάζα. Τον επόμενο χρόνο ο Ιταλός φυσικός E. Fermi ονόμασε το σωματίδιο αυτό «νετρίνο». Το νετρίνο ανακαλύφθηκε πειραματικά 25 χρόνια αργότερα.
1932 Ανακάλυψη του νετρονίου από τον Άγγλο φυσικό J. Chadwick. Η εικόνα των φυσικών για τα σωματίδια, από τα οποία αποτελείται η ύλη όταν βρίσκεται σε σταθερή κατάσταση ολοκληρώνεται. Η έρευνα θα συνεχιστεί στις ασταθείς καταστάσεις.
Ανακαλύπτεται το ποζιτρόνιο, από τον Αμερικανό φυσικό C.D. Anderson. Όπως δηλώνει και το όνομά του (positive electron) το ποζιτρόνιο έχει μάζα ίση με του ηλεκτρονίου και θετικό στοιχειώδες ηλεκτρικό φορτίο.
Κατασκευάζεται το ηλεκτρονικό μικροσκόπιο, από το Γερμανό μηχανικό E. Ruska. Το μικροσκόπιο αυτό, που δίνει πολύ μεγαλύτερη μεγέθυνση από τα συνηθισμένα μικροσκόπια έδωσε μεγάλη ώθηση στην ανάπτυξη της βιολογίας. Κατασκευάστηκε το πρώτο ραδιοτηλεσκόπιο από τον K. Jansky.
1934 Ο Fermi κατασκεύασε πυρήνες Ποσειδωνίου (Νp) με ατομικό αριθμό 93, που δεν υπάρχουν στη φύση, βομβαρδίζοντας πυρήνες Ουρανίου με νετρόνια. Επίσης ο Fermi διατυπώνει τη θεωρία της ασθενούς αλληλεπίδρασης, που μοιάζει με την ηλεκτρομαγνητική αλλά έχει πολύ μικρότερη εμβέλεια, για να εξηγήσει τη δημιουργία των νετρίνων.
1935 Ο Ιάπωνας φυσικός H. Yukawa διατυπώνει μία θεωρία γαι την περιγραφή της ισχυρής αλληλεπίδρασης με σκοπό να εξηγήσει τη σταθερότητα των πυρήνων.
Διαπιστώνεται η ύπαρξη του Ουράνιου-235, από τον Αμερικανό φυσικό Α. Dempster.
Ο Σκώτος φυσικός R. Watson-Watt κατασκευάζει την πρώτη συσκευή ραντάρ.
1937 Παρατηρούνται από πολλούς ερευνητές φυσικούς τα μιόνια.
1938 Ο Αμερικανός φυσικός G. Gamow εξήγησε στα 1929 ότι η πηγή της ηλιακής ενέργειας είναι η σύντηξη του υδρογόνου. Ο πλήρης μηχανισμός περιγράφεται στα 1938.
1939 O Γερμανός φυσικός O. Ηahn ανακαλύπτει τη σχάση του Ουρανίου. Ο Ούγγρος φυσικός L. Szilard ανακαλύπτει το μηχανισμό της αλυσσιδωτής πυρηνικής αντίδρασης.
Ο E. Armstrong (Αμερικανός ραδιομηχανικός) επινόησε μέθοδο μετάδοσης ραδιοκυμάτων, με διαμόρφωση συχνότητας (Frequency Modulation ή FM).
1940 Κατασκευάζεται το βήτατρο (κυκλικός επιταχυντής ηλεκτρονίων), από τον Αμερικανό φυσικό D. Kerst.
1941 Κατασκευάστηκε το πρώτο αεριωθούμενο αεροπλάνο. Χρησιμοποιούσε κινητήρα προώθησης, που είχε κατασκευάσει από το 1930 ο Βρετανός αεροναυπηγός F. Whittle.
1942 Αρχίζει η ατομική εποχή. Κατασκευάστηκε στις ΗΠΑ από ομάδα επιστημόνων, επί κεφαλής των οποίων ήταν ο Fermi, ο πρώτος πυρηνικός αντιδραστήρας.
1944 Κατασκευάστηκε από τους Γερμανούς ο πρώτος πύραυλος και χρησιμοποιήθηκε για στρατιωτικούς σκοπούς. Ο κατασκευαστής του μηχανικός W. von Braun συνέχισε μετά τον πόλεμο την καριέρα του στις ΗΠΑ.
1945 Κατασκευάστηκε και χρησιμοποιήθηκε η βόμβα πυρηνικής σχάσης.
Κατασκευάστηκε το συγχροκύκλοτρο, με το οποίο μπορούσαν να επιτευχθούν ενέργειες φορτισμένων σωματιδίων πολύ μεγαλύτερες από αυτές, που επιτυγχάνοντο με το κύκλοτρο.
1946 Οι Αμερικανοί F. Bloch και E. Purcell ανακάλυψαν ταυτόχρονα τον πυρηνικό μαγνητικό συντονισμό (NMR). Η τεχνική του NMR χρησιμοποιείται όλο και περισσότερο στην ιατρική με το όνομα Μαγνητική Τομογραφία.
1947 Ανακαλύφθηκε από τον άγγλο φυσικό C. F. Powell το σωματίδιο πιόνιο, που είχε αναφέρει στη θεωρία του ο Yukawa.
Ο Αμερικανός χημικός W.Libby ανακαλύπτει τη μέθοδο ραδιοχρονολόγησης με το ραδιενεργό άνθρακα 14.
1948 Ανακαλύπτεται το τρανζίστορ, που σύντομα θα αντικαταστήσει τις ηλεκτρονικές λυχνίες, έναντι των οποίων παρουσιάζει σημαντικότατα πλεονεκτήματα.
Ο Αμερικανός φυσικός R. Feynman διατυπώνει τη θεωρία της Κβαντικής Ηλεκτροδυναμικής (ΚΗΔ), δηλαδή την κβαντική θεωρία για τον ηλεκτρομαγνητισμό, που χρησιμοποιείται, λόγω της επιτυχίας της, ως πρότυπο για την περιγραφή και άλλων αλληλεπιδράσεων.
1952 Οι Αμερικανοί κατασκευάζουν βόμβα πυρηνικής σύντηξης. Ένα χρόνο αργότερα η Σοβιετική Ένωση κατασκευάσει την αντίστοιχη βόμβα.
Πλήθος νέων αδρονίων (σωματιδίων που συμμετέχουν στην ισχυρή αλληλεπίδραση) ανακαλύπτονται. Η πληθώρα των νέων σωματιδίων, με παράξενες ιδιότητες, βάζει σε αμφισβήτιση την απλότητα περιγραφής των στοιχειωδών σωματιδίων. Εναγώνια αναζήτηση απλούστερης περιγραφής.
1953 Ο Άγγλος φυσικός F. Crick και ο Αμερικανός βιοχημικός J. Watson ανακαλύπτουν την ελικοειδή δομή του DNA. Ένα χρόνο νωρίτερα η Αγγλίδα βιοφυσικός R. Franklin είχε καταλήξει στα ίδια συμπεράσματα.
Ο Αμερικανός φυσικός D. Glaser ανακαλύπτει το θάλαμο φυσαλίδων, μια νέα τεχνική ανίχνευσης σωματιδίων.
1954 Κατασκευάζεται το Μπέβατρο, επιταχυντής που μπορεί να επιταχύνει πρωτόνια σε ενεργειακές περιοχές, που αντιστοιχούν στην ενέργεια κοσμικών ακτίνων. Το Μπέβατρο θα χρησιμοποιηθεί ένα χρόνο αργότερα στην παρασκευή αντιπρωτονίων. (Αντιπρωτόνια: σωματίδια με μάζα ίση με τη μάζα του πρωτονίου και στοιχειώδες αρνητικό φορτίο.).
Ιδρύεται στη Γενεύη, στα σύνορα Ελβετίας - Γαλλίας το CERN (Ευρωπαϊκό Εργαστήριο για τη φυσική των στοιχειωδών σωματιδίων) από 12 ιδρυτικά κράτη - μέλη. Σήμερα (2002) συμμετέχουν στο CERN 20 κράτη και απασχολούνται στα ερευνητικά του προγράμματα περίπου 5.500 επιστήμονες.
Κατασκευάζεται μικροσκόπιο, το οποίο μπορεί να διακρίνει αντικείμενα μεγέθους ατόμου. Ονομάζεται μικροσκόπιο πεδίου ιόντων.
1955 Παρασκευάστηκε το αντιπρωτόνιο από τον Ιταλό G.E.Segre και τον Αμερικανό O. Chamberlain. Πρόκειται για σωματίδιο με μάζα ίση με του πρωτονίου και στοιχειώδες αρνητικό φορτίο. Οι δύο φυσικοί τιμήθηκαν με το βραβείο Νobel της φυσικής στα 1959.
1956 Ανιχνεύεται το νετρίνο, του οποίου η ύπαρξη είχε προβλεφθεί θεωρητικά 25 χρόνια νωρίτερα από τον Αυστριακό φυσικό W Pauli. Την ίδια περίοδο ανιχνεύεται και το αντινετρίνο. Τα σωματίδια αυτά χωρίς ηλεκτρικό φορτίο και με μηδενική πιθανότατα μάζα ανήκουν σύμφωνα με τη σύγχρονη ταξινόμηση των στοιχειωδών σωματιδίων στην κατηγορία των λεπτονίων.
Παρασκευάζεται το αντινετρόνιο, το οποίο αποτέλεσε πηγή προβληματισμού για τους φυσικούς, μια και το νετρόνιο δεν έχει φορτίο. 10 χρόνια αργότερα με την εισαγωγή των κουάρκ ως σωματιδίων που απαρτίζουν τυ πρωτόνιο και το νετρόνιο θα γίνει κατανοητή η ύπαρξη και η δομή του αντινετρονίου.
1957 Οι Σοβιετικοί θέτουν σε τροχιά τον πρώτο τεχνητό δορυφόρο τον Σπούτνικ Ι. Αρχίζει η διαστημική εποχή. Ένα χρόνο αργότερα οι Αμερικανοί εκτοξεύουν το δικό τους πρώτο δορυφόρο Explorer I.
1959 Νέα συσκευή ανίχνευσης σωματιδίων, ο θάλαμος σπινθηρισμών. Μπορεί να ρυθμιστεί ώστε να ανιχνεύει μόνο επιθυμητά συμβάντα.
1960 Κατασκευάζεται από τον αμερικανό φυσικό T. Maiman το πρώτο Laser. Μέσα σε λίγα χρόνια τα laser θα χρησιμοποιηθούν σε πάμπολλα πεδία εφαρμογών, τηλεπικοινωνίες, ιατρική, έρευνα ως και σε οικιακές συσκευές.
1961 Ο πρώτος άνθρωπος, που εκτοξεύτηκε και τέθηκε σε τροχιά γύρω από τη Γη ήταν ο Σοβιετικός Γ. Γκαγκάριν, με το διαστημόπλοιο Βοστοκ Ι.
Ο Aμερικανός φυσικός M. Gell-Mann προτείνει τα κουάρκ (quarks), ως στοιχειώδη συστατικά των αδρονίων.
1964 Ανακαλύπτεται από τους Αμερικανούς A. Penzias και R.Wilson η μικροκυματική ακτινοβολία υποβάθρου, η οποία αποτελεί ισχυρή ένδειξη ότι το Big Bang είναι ο πιθανότερος μηχανισμός, με τον οποίο δημιουργήθηκε το Σύμπαν.
1968 Ενοποιείται η ηλεκτρομαγνητική και η ασθενής αλληλεπίδραση στην ηλεκτρασθενή αλληλεπίδραση, από τους S. Weinberg, S. Glashow (Αμερικανοί) και A. Salam (Πακιστανός).
1969 Οι Αμερικανοί N. Armstrong και Ε. Oldrin γίνονται οι πρώτοι άνθρωποι που περπατούν στη Σελήνη.
1972 Κατασκευάζονται οι δίσκοι Laser, γνωστοί και ως CD. Μέσα σε μια εικοσαετία οι δίσκοι αυτοί θα αντικαταστήσουν τους δίσκους βινυλίου στις συσκευές αναπαραγωγής ήχου και θα βρουν πλατιά εφαρμογή, ως αποθηκευτές δεδομένων σε πολλές διατάξεις όπως στους computers.
1974 Ολοκληρώνεται η αντίληψη των φυσικών για το πλήθος και το είδος των λεπτονίων. Υπάρχουν 6 λεπτόνια και τα 6 αντισωματίδιά τους. Ολοκληρώνεται η αντίληψη των φυσικών για το πλήθος και το είδος των κουάρκς. Υπάρχουν 6 κουάρκ, κατανεμημένα σε τρία ζεύγη, καθώς και τα αντίστοιχα 6 αντικουάρκ.
1979 Ενισχύεται η άποψη περί υπάρξεως γλοιονίων, η οποία προβλέπεται από την Κβαντική Χρωμοδυναμική (QCD). Η QCD είναι η θεωρία που διατυπώθηκε στα 1972 για να εξηγήσει την ισχυρή αλληλεπίδραση.
1980 Εμφανίζονται σοβαρές ενδείξεις ότι το νετρίνο έχει μάζα. Αναπτύσσονται νέες υποθέσεις σχετικά με το «μυστήριο της ελλείπουσας μάζας» η ύπαρξη της οποίας θα μπορούσε να δώσει απάντηση σε σοβαρά κοσμολογικά ζητήματα.
1982 Η πρώτη και τελευταία ως σήμερα ένδειξη ύπαρξης του μαγνητικού μονόπολου, η οποία τελικά δεν έγινε αποδεκτή από την επιστημονική κοινότητα.
1983 Ανακαλύπτονται στο πείραμα "UA1", στο CERN, τα σωματίδια W+, W- και Ζ0, φορείς της ασθενούς αλληλεπίδρασης. Ο υπεύθυνος του πειράματος Ιταλός Carlo Rubbia και ο Ολλανδός Simon van der Meer
1987 Κατασκευάζονται υλικά, που παρουσιάζουν θερμή υπεραγωγιμότητα, δηλαδή υπεραγωγιμότητα σε θερμοκρασίες της περιοχής του υγρού αζώτου. Στην περίπτωση που θα γίνει κατορθωτή η παραγωγή τέτοιων υλικών σε μαζική κλίμακα είναι δυνατόν να επιτευχθεί μεταφορά ηλεκτρικής ενέργειας σε πολύ μεγάλες αποστάσεις με μηδενικές θερμικές απώλειες.
1989 Ξεκίνησε στο CERN ο WWW (World Wide Web). Ο αρχικός σκοπός ήταν να έρχονται εύκολα σε επαφή επιστήμονες από όλα τα μέρη του κόσμου, που συμμετέχουν σε προγράμματα του CERN. Γρήγορα ο WWW έγινε ο δημοφιλέστερος διακομιστής του Internet.
LEP Collider (Μεγάλος επιταχυντής συγκρουομένων δεσμών ηλεκτρονίων και ποζιτρονίων): Ένας από τους μεγαλύτερους επιταχυντές στοιχειωδών σωματιδίων. Πρόκειται για ένα σύστημα κυκλικών σωλήνων με μήκος περιφέρειας 27 km. Σ΄ αυτούς επιταχύνονται ταυτόχρονα δέσμες ηλεκτρονίων και ποζιτρονίων σε ταχύτητες πολύ κοντά στην ταχύτητα του φωτός τα οποία στη συνέχεια οδηγούνται σε σύγκρουση.
1990 Τίθεται σε τροχιά το διαστημικό τηλεσκόπιο Hubble. Το τηλεσκόπιο αυτό δίνει πολύ καθαρότερες εικόνες του διαστήματος από τα επίγεια τηλεσκόπια και επιτρέπει στον άνθρωπο να ερευνήσει το διάστημα σε βάθος ως τότε απρόσιτο.
Τέλη του 20ου αιώνα Διατυπώνεται η θεωρία του «Καθιερωμένου Προτύπου» (Standard Μodel), που είναι συνδυασμός της ηλεκτρασθενούς θεωρίας και της κβαντικής χρωμοδυναμικής, το οποίο επιχειρεί να περιγράψει όλες τις συμπεριφορές των στοιχειωδών σωματιδίων, λεπτονίων και κουάρκ. Η επιτυχία του υπερβαίνει και τις πιο αισιόδοξες προβλέψεις.
Βιβλιογραφία
- Richard Feynman, The Character of Physical Law, Random House (Modern Library), 1994, hardcover, 192 pages, ISBN 0679601279
- Richard Feynman, Leighton, Sands, The Feynman Lectures on Physics, Addison-Wesley 1970, 3 volumes, paperback, ISBN 0201021153, hardcover Commemorative edition, 1989, ISBN 0201500647
- Eric Weisstein, Weisstein and Wolfram Research, Inc., and et al, World of Physics. Online Physics encyclopedic dictionary.
- Carl R. Nave, HyperPhysics, . Online crosslinked physics concept maps.
- Hawking, Το Χρονικό του Χρόνου, Εκδόσεις Κάτοπτρο, 2000 χαρτόδετη έκδοση, 248 σελίδες, ISBN 960-7778-18-9