|
|
(2 ενδιάμεσες εκδόσεις από 2 χρήστες δεν εμφανίζονται) |
Γραμμή 1: |
Γραμμή 1: |
| '''TWO EXPERIMENTS TO EXAMINE THE UNIFIED HYPOTHESES'''
| | Αγαπητέ χρήστη Nalxhal, έχουμε διαγράψει όσα έχετε γράψει στη συζήτηση αυτή και στην προσωπική σας σελίδα. |
| | Ο λόγος είναι ότι αυτά παραβίαζαν τους κανόνες λειτουργίας της ιστοσελίδας. Στο astronomia.gr δεν επιτρέπεται η παρουσίαση πρότυπης εργασίας ή και η διαφήμιση μέσω των προσωπικών σελίδων ή των σελίδων συζήτησης. Επίσης υπενθυμίζουμε ότι η γλώσσα στην οποία γράφουμε είναι τα ελληνικά. |
| | Σε καμία περίπτωση δεν κρίνουμε την εργασία σας, πράγμα το οποίο ούτως ή άλλως δεν εντάσσεται στα πλαίσια των στόχων της ιστοσελίδας. Παραθέτω πιο κάτω το σημείο από το [[:astronomia.gr:FAQ|astronomia.gr:FAQ]] που αναφέρεται στις πρωτότυπες εργασίες. |
|
| |
|
| Author : Alexandris Nikos
| | " Πρωτότυπες Εργασίες |
|
| |
|
| http://profiles.yahoo.com/nalxhal
| | Δεν γίνονται δεκτές για δημοσίευση πρωτότυπες εργασίες. Σε περίπτωση που έχετε να προτείνετε κάτι νέο, δημοσιεύστε το στα σχετικά επιστημονικά περιοδικά και όταν γίνει μέρος της αστρονομικής γνώσης μπορεί να προστεθεί εδώ. " |
| http://profiles.pathfinder.gr/nalxhal
| |
|
| |
|
| ABSTRACT
| | -- [[Χρήστης:Cavas]] -- |
|
| |
|
| We can close this open presentation with an experimental proposes. This start with a philosophical book (1999-2006, ISBN 960-8353-85-8) with the main conclusion about the existence of two dimension of time and extra dimension of space. Papers, articles in an open way include a mathematical proceeding with calculations between hypothesis and the acceptable parameters of unified theory as mass plank, temperature of plank and length of plank. Then we found the connection with real world as Avogadro number, proton, electron and fine structure of electron. We propose more hypotheses to search this relation and some ways to prove them, like neutrino prediction, length of Fermi, cmb radiation and nuclear particles. To close this discussion we must to propose an experimental application of these ypotheses and metrical analysis.
| | -- Προσθήκη από χρήστη [[Χρήστης:Quendi|Quendi]] 00:59, 1 Νοεμβρίου 2007 (UTC) -- |
| | |
| | |
| | |
| MAIN ARTICLE
| |
| | |
| We must to remember some interest functions and relations of two papers
| |
| All metrical analysis describe little black holes LBH
| |
| | |
| meg = 4,66.10-9.kg = 2.61x1018.GV/C2 of 5.1a), function 108 of paper: m=e/k > 0
| |
| e : electron charge , Ke: Coulomb constant , k =(G/Ke)1/2 = (4πGε0)1/2 =8,6164×10-11 C/Kg , G: gravity constant , function (106) ,π=3.14..,c:velocity of light ,λplank: length of plank , h: plank constant , le:length of charge 5.29x10-11.m , Na:avogadro’s number , kb: Boltzman’s constant .
| |
| paper : http://www.wbabin.net/science/alexandris.pdf
| |
| one very important constant
| |
| π*= 3,1598199 with units (76)
| |
| h2.c2.G / Ke3. kbl 4 = π*4
| |
| | |
| Temperature in a unified area
| |
| | |
| T =(n1/n2)-3/2. N-3/2.1,085×1016.Q/ (λ.lc)1/2 , λ = lc , a = ap (102)
| |
| | |
| For n1 =10 , n2 =12 , N=1 , Q=e we have
| |
| | |
| T.lg = 5,755×10-3.m.K , double Wien’s constant (171)
| |
| | |
| Using the law of Stefan-Boltzman , function 102 or 171 for an appropriate length and N we have results in agreement while Wien’s law cannot .
| |
| Wien’s law is a case without gravity but has gravity . Gravity affects to Wien’s law and calculations are in disagreement with the law of Stefan - Boltzman
| |
| the function 102 also gives the Tplank for lplank without sqrt(2π). The Wien’s constant is not valid.
| |
| | |
| Mass plank calculation
| |
| | |
| mc =c2.λPlanck / 2π.k2. Kel =2,17671.10-8 kg = MPlanck > 0 (117)
| |
| | |
| Expotential geometry of Interactions :
| |
| | |
| (E/l)c2.(E/l)G1. (E/l)*4 = (E/l)e3 .(E/l)T 4 (150)
| |
| or forces
| |
| fc2.fG1. f*4 = fe3 .fT 4 (154)
| |
| | |
| Gaus geometry of energies
| |
| So the sum of energies is not valid, but the sum of the squares of the energies multiplied by the square of the number of the spatial dimensions of each corresponding interaction are:
| |
| Εcge2 = -4.Ec2- Eg2 +9.Ee2 (179)
| |
| Ec =-3.h.c/ lc , Eg= -3.G.m2 / lg , Ee=3.(Ke.(k.m)2 /lc , lc = λPlanck (180)
| |
|
| |
| lg=lc.sqrt(2π)
| |
| From (158) function : m = mcge = 1,7209×10-7.kg or energy 1,5467×1010.J and this mass comes from function 155 : fc2.fG1= fe3 the relation of forces : electromagnetic , gravitational and electrical force . We rename the Εcge =6,181595963x1010.J to Εsqrt =sqrt( -4.Ec2- Eg2 +9.Ee2 )
| |
| We must replace the type error Εsqrt =6,5963x10-14.J
| |
| | |
| Function 175 : From 162,172 could be : Εcge = A175/sqrt(2). lc ,
| |
| A175=2,5041x10-24.J.m/kg2 Εsqrt / Εcge = 1,97 or
| |
| Function 177 : for A177 sqrt(2). lc , A177=2,383x10-24.J.m/kg2 , n=10 , we have :Εsqrt / Εcge = 2,07 ,
| |
| thaus Εcge = 2.A/sqrt(2). lc or
| |
| Εcge = A/(sqrt(2)/2). lc = A/(sqrt(2)/2). lc = A/cos45o. lc
| |
| so Εcge = A/cos45o. lc
| |
| | |
| Avogadro number
| |
| meg.le2 .NA-2 = MPlanck.lg2
| |
| le=5,291×10-11.m , meg > 0, MPlanck> 0 (194)
| |
| This meg is of hypothesis 5.1a)
| |
| | |
| Proton mass
| |
|
| |
| Empirical form of angular momentum that is relevant to the mass of proton.
| |
| (NA.mp. (meg/(2π)1/2)) 1/2 .c. λplank = p.10.h, p = 1,0065
| |
| meg > 0 (195)
| |
| This (meg/(2π)1/2 is meg of hypothesis 5.1.b
| |
| mp=mass of proton, lg (length of gravity interaction)=λPlanck.(2.π)1/2.
| |
| | |
| From article : http://www.wbabin.net/science/alexandris5.pdf
| |
| | |
| Moles and fine structure of electron
| |
| | |
| Na.mp =A.meg and
| |
|
| |
| A=(Eplank2/ Emeg2).100.( 2π ) 1/2
| |
| Na.me = 10.(E1/E2).meg
| |
| Eplank2/ Emeg2=Je/h=21,80995
| |
| ap/a=2π or ap=2π.a , a=1/137,035 , ap : fine structure of proton
| |
|
| |
| So we have two new energies : 1) Ecge and 2) Emcge
| |
| Emcge 1.5467E+10.J
| |
| Emeg 4.1890E+08.J
| |
| Eplank 1.9563E+09.J
| |
| Ecge , sum 6.18159E+10.J
| |
| | |
|
| |
| | |
| | |
| 1th Experiment
| |
| | |
| Verification of hypothesis lg=sqrt(2π).lc . This hypothesis said that some electromagnetic waves or all related with a gravitational wave.
| |
| Two lights like laser cross the space between earth and a planet or satellite in a distance of sun. The sun effects with gravity. The two lights meet each other in a different phase. If gravity wave existed, the frequency c/lc and the lines of lights will change.
| |
| | |
| 2th experiment
| |
| | |
| Astronomical observation of unified points. The unified points must have density of energy in accordance with length of light in two laws: 1) Stefan Boltzman law 2) law of Wien with double constant functions 102 , 171 and length of gravity lg 3) lengths of first paper λ = 2πlc , ypothesis 4 and lg = sqrt(2π).lc , ypothesis 5 http://www.wbabin.net/science/alexandris.pdf
| |
| We observe and calculate the areas of sky in the same way of CMB prediction
| |
| Modified law of Wien in function 171
| |
| constant171=2.constant of Wien's constant
| |
| CMB radiation ( http://hyperphysics.phy-astr.gsu.edu/hbase/bkg3k.html )has energy P/S = 1,9X10-3.w/m2 ,
| |
| this value in the law of Stefan-Boltzman ( function 166 ) P/S=σ.T4,
| |
| gives 13,52K
| |
| Then in modified law of Wien ( in function 171 ) T.lg=5,755×10-3.m.K so
| |
| lg = 0,42mm
| |
| λ=2πlc , lg=sqrt( 2π ).lc so
| |
| λ=sqrt(2π).lg =1,052mm ,
| |
| the cosmic microwave background radiation (CMB).
| |
| This length λ is length of meg or the length of remnant force as we extracted in http://www.wbabin.net/science/alexandris9.pdf
| |
| So CMB radiation is the radiation of meg = e/k
| |
| First proceeding in this solution was in below paper
| |
| But we must fix the type errors: http://www.wbabin.net/science/alexandris5.pdf
| |
| | |
| | |
| *All presentation in : http://www.wbabin.net , list of authors
| |